Читаем Озадачник полностью

– Представляешь, вчера проколол колесо, снимаю его, ставлю запаску – а гаек-то и нет, ни одной! Куда подевал, не пойму – то ли с обочины скатились, то ли просто не вижу, вечер, темно уже, фонаря нет.

– Во дела! И что же ты, эвакуатор вызвал?

– Да нет, прикрутил колесо, исхитрился!

– Да ну ладно, как это вообще возможно?

А и правда, как?

Варианты ответов

1. Нашел гайки где-то в машине.

2. Остановил попутку, у водителя которой оказались запасные гайки.

3. Никак – это придуманная, причем малоправдоподобная байка.

Правильный ответ:1

Если бы у водителя оставалась хотя бы одна гайка, это уже было бы решением: закрутил потуже – и можно ехать, очень аккуратно и небыстро, но можно. Но где же ее взять? Есть ли в машине еще такие же гайки? Конечно, есть – на трех оставшихся колесах, обычно по четыре на каждом (иногда – по пять, но для простоты будем считать, что четыре). Если открутить по одной с каждого колеса, то там останется еще по три, и три гайки освобождаются – ими и прикручиваем запаску. Получается довольно надежное крепление – до шиномонтажа точно хватит.

<p>32. На шахматной доске</p>

Маленький Алеша втихаря испортил шахматную доску – на каждой клетке написал маркером по числу (все числа – натуральные, т. е. положительные целые) и при этом (вот же хитрец!) расположил их так, что в каждой строке и в каждом столбце получившейся таблицы число в клетке, расположенной не у края доски, есть среднее арифметическое от суммы двух его ближайших соседей. Какие числа стоят в углах доски, если известно, что их сумма равна 28?

Варианты ответов

1. 7, 7, 7, 7.

2. 2, 12, 2, 12.

3. 1, 7, 13, 7.

Правильный ответ:1

Эту в общем математическую задачу можно решить логически – методом угадывания. О, зря смеетесь, это очень мощный метод! Например, им с успехом пользовался физик Я. Б. Зельдович, признававшийся: «Я решаю только те задачи, на которые уже знаю ответ». (В «Озадачнике» мы его тоже уже задействовали – см. задачу № 25.) Итак, в каком же самом простом случае число есть среднее арифметическое двух других? Когда все три числа равны между собой. Допустим, все числа на доске равны одному и тому же числу – тогда это число 7 (четыре семерки в углах дают в сумме 28), и это и есть решение. Осталось доказать, что оно единственное, – просто наметим доказательство, не углубляясь в детали. Главное – показать, что каждая строка (столбец) нашей шахматной «таблицы» обязана быть арифметической прогрессией. Далее, поскольку все числа натуральные (никаких отрицательных или не целых), то прогрессии неодинаковых чисел с наименьшей суммой значений в углах – это 1, 2, 3, 4, 5, 6, 7, 8; 2, 3, 4, 5, 6, 7, 8, 9; и т. д. – до 8, 9, 10, 11, 12, 13, 14, 15 – т. е. сумма «углов» равна 1 + 8 + 15 + 8 = 32, меньше чем 32 не получится ни при каких раскладах. Значит, наше решение единственное, все в порядке.

<p>33. Без семьи</p>

Юноша, полностью изобличенный в ужасном преступлении – двойном убийстве собственных родителей, обращается с последним словом к суду и просит о снисхождении. Выслушав его, судья отмечает, что столь циничной речи ему прежде слышать не доводилось, и назначает максимальное наказание, которое предусматривает Уголовный кодекс для такого вида преступлений. Что же такого сказал убийца?

Варианты ответов

1. Изложил свои мотивы и спросил судью: мол, а как вы бы поступили на моем месте, ваша честь?

2. Сослался на то, что его близкое родство с жертвами преступления является смягчающим обстоятельством.

3. Сослался на бóльшую, в сравнении с другими душегубами, тяжесть своего положения.

Правильный ответ:3

Автор очень доволен – удалось слепить неплохую задачку из старого анекдота. Даже если вы его не знаете (или не вспомнили), на что и был расчет, то вы легко определите правильный вариант ответа простым логическим рассуждением. Первая версия отметается сразу – подобную реплику мог произнести любой преступник («Я хотел есть и поэтому ограбил продуктовую лавку, а как бы вы поступили на моем месте?», «Я увидел, как он смотрит на мою жену, и немедля зарезал его – а как бы вы…» и т. д.). Вторая – также, никогда знакомство или родство с жертвой не было поводом для снисхождения к убийце. Методом исключения остается только третий вариант. Так что же он сказал судье? «Ваша честь, я прошу оказать мне милость и смягчить наказание, ведь я теперь КРУГЛЫЙ СИРОТА!»

<p>34. Радиофобия</p>

– Не смей выходить сегодня из дома! Это очень опасно, по радио сказали, что радиационный фон в десять раз превышает норму! – Жена взывала к осторожности своего супруга, но тот не внял ее просьбе и как ни в чем не бывало ушел на работу. Насколько рискованно он поступил?

Варианты ответов

1. Рискованно и глупо, десятикратное превышение – это вам не шутки.

2. Он ничем не рисковал.

3. Если работа недалеко (меньше 30 минут пути), то риска нет – он просто не успеет получить большую дозу облучения.

Правильный ответ:2
Перейти на страницу:

Похожие книги