Вообще клетка располагает глубоко эшелонированной системой защиты от повреждающего действия кислорода. Эта система состоит из механизмов: (1) предотвращающих «паразитные» химические реакции одноэлектронного восстановления кислорода и (2) убирающих продукты такого восстановления. Но, надо понимать, в некоторых неблагоприятных условиях все эти многочисленные системы защиты оказываются неэффективны, особенно это может иметь место, например, при дефектах системы дыхательных ферментов. В таких случаях резко возрастает риск повреждения активными формами кислорода спиралей ДНК. Сосуществование клеток, изуродованных подобными дефектами, в одной и той же ткани с нормальными клетками, представляется опасным, прежде всего в силу высокой вероятности злокачественного перерождения всей окружающей живой ткани. Чтобы избежать развития ситуации по такому сценарию, клетки, не способные предотвратить накопление активных продуктов кислорода, уничтожаются апоптозом – особым механизмом самоубийства клетки, при котором в клетке активируются ферменты эндонуклеазы, расщепляющие клеточную ДНК на фрагменты.
Но если учитывать, что во многих миллиардах клеток каждого человека ежесекундно происходят многие миллиарды биохимических реакций, то даже небольшая доля процента сбоя механизмов защиты от свободно радикального окисления в течение многих лет жизни человека в абсолютном выражении проявляется в накоплении большого количества клеток с искаженными, поврежденными ДНК. Делясь, эти клетки передают такие искаженные свойства своим «наследникам», количество подобных «неправильных» и «неэффективных» клеток в организме постепенно нарастает, и состоящие из них ткани и органы перестают полноценно выполнять свои функции. Именно во многом так нарастает процесс старческого одряхления организма.
Что же может человек противопоставить такому неумолимо действующему и неотвратимому механизму искажения свойств клеток и такому результату – старению всего организма? Ответ прост и логичен.
Прежде всего необходимо несколько уменьшить концентрацию кислорода в клетках, чтобы там не оказывалось «лишних», не задействованных лишь в строго необходимых энергообеспечивающих реакциях молекул О2
. Этот легкий недостаток кислорода (гипоксия) как раз и достигается во время дыхания с растягиванием циклов вдоха и выдоха и волевыми задержками между этими фазами или, в менее предпочтительном случае, при постоянном уменьшении глубины дыхания.Другая важнейшая задача состоит в том, чтобы весь кислород до конца, без остатка «сжигался» именно в четко управляемых реакциях по высвобождению энергии из аденазинтрифосфорной кислоты и связывался в конечных и безвредных продуктах этой реакции – углекислом газе и воде. В этом случае не будет оставаться нисколько свободного кислорода для «неуправляемого» блуждания по объемам клетки с вызыванием случайных и вредных реакций с ее внутренними структурами.
Если вся биохимическая цепочка из многих дыхательных ферментов срабатывает четко и без сбоев, то появление свободных активных форм кислорода будет сведено к самому минимуму. Тонким, командно – информационным управлением подобными процессами во внутриклеточных реакциях и их динамической балансировкой занимаются потоки нефизической энергии
Подробно об этих процессах читайте в других книгах автора.
Отсюда становится понятным, что для преодоления подобных глубинных процессов клеточного старения, в основе которых лежат сбои в фундаментальных механизмах жизнедеятельности клетки при наличии избыточного количества кислорода, необходимо ежедневно на протяжении всей жизни применять технологии сразу двух уровней.