Есть еще один очень интересный аспект действующего эффекта практик на растяжение ритма и задержек дыхания. Это возможность частичного перехода клеток высших организмов на анаэробное, безкислородное дыхание, которое иногда еще называют эндогенным (внутренним). Выше мы говорили, что в ранний этап развития жизни на Земле в атмосфере было очень мало кислорода, и простейшие одноклеточные и первые многоклеточные живые организмы осуществляли биохимические реакции без помощи кислорода. Этот процесс называется брожением. Преимущественно брожение в живых организмах представлено гликолизом – безкислородным расщеплением глюкозы. Впоследствии с накоплением в атмосфере Земли достаточных количеств кислорода живые существа перешли на энергетически более эффективный процесс называемый кислородным окислением. Но в наборе ДНК клеток каждого земного существа остался ген, который может запускать в действие подобный процесс брожения для выработки энергии при возникновении острой необходимости.
Исследования последних десятилетий показали, что практически у всех животных имеются ферменты для анаэробного гликолитического обмена. Некоторые примитивные живые организмы ведут исключительно анаэробный образ жизни, другие нуждаются в небольшом количестве кислорода, но безкислородный гликолиз у них остается основным видом обмена, несмотря на присутствие в среде кислорода. Другие животные могут переходить на анаэробный путь метаболизма лишь на непродолжительное время. Большое значение для нас имеет работа А. В. Войно – Ясинецкого (1958), который изучал в этом отношении особенности метаболизма ряда представителей кольчатых червей,
членистоногих, круглоротых рыб, земноводных и млекопитающих. Результатом этой работы явилось понимание того, что в некоторых неблагоприятных условиях общей закономерностью являются реакции последовательного выключения филогенетически (эволюционно) молодых функциональных систем с одновременным запуском в работу более старых систем, функционировавших когда – то на более ранних этапах филогенеза (эволюции). То же самое можно сказать и по отношению к гипоксии (или гиперкапнии), когда в организме может происходить переключение регуляторно – метаболических систем на древние филогенетические (эволюционные) режимы функционирования клеток. Расчеты специалистов по биохимии показывают, что у человека анаэробный гликолиз может дать организму до 10 процентов биохимической энергии.
Нужно хорошо понимать, что наше физическое тело, как и энергетическая структура, имеет весьма впечатляющие резервы для мобилизации и активации неких скрытых возможностей. Многие из таких скрытых резервов таятся в структурах ДНК наших клеток. Для начала вспомним, что цепочка ДНК состоит из многочисленных генов, и каждый ген управляет и мобилизует какую-то одну из биохимических реакций имеющих возможность активизироваться в клетке. Но именно имеющую возможность. Дело в том, что далеко не все гены активны и далеко не все биохимические реакции, заложенные в их потенциал, реализуются в нашей жизни. Здесь положение с ДНК очень схоже с ситуацией с нашим мозгом, у которого 90 процентов объема и возможностей находятся в глубоком резерве (Рис. 5.2.).
Рис. 5.2. Каждая из миллиардов спиралей ДНК организма человека содержит в себе до 80 процентов не работающих генов.
Кроме всего прочего, в многочисленных генах ДНК «законсервированы» возможности запуска в работу различных биохимических реакций, которые работали в клетках древнейших организмов многие сотни миллионов лет назад. Затем их актуальность была исчерпана, эти реакции перестали работать в клетках уже более высокоразвитых организмов, но вот сама потенциальная возможность возрождать и запускать эти реакции в действие в генах осталась вполне реальной. И таких атавистических, рудиментарных биохимических механизмов в наших клетках содержится достаточное количество.
Например, это относится к генам, позволяющим нашему организму утилизировать и расщеплять этиловый спирт. Вообще этиловый спирт, как и многие другие многоатомные спирты должен являться сильнейшим ядом для нашего организма. Как, например, метиловый спирт. Но почему-то спирт этиловый переносится организмом в большинстве случаев без тяжелых отравлений. Оказывается, здесь в действие вступает «биохимическая память» наших ДНК. Дело в том, что миллиарды лет назад в клетках некоторых одноклеточных и примитивных многоклеточных организмов этиловый спирт был биохимическим энергоносителем. Ведь и вправду энергоемкость молекулы этилового спирта заметно выше, чем соответствующая энергоемкость молекулы аденазинтрифосфорной кислоты. Но в ходе эволюции, когда усложняющиеся многоклеточные