Далее перед автором стоит трудная задача расшифровать детали хитроумного строения специфической части молекулы антитела, которая ей позволяет взаимодействовать с одним, и только с одним из миллионов возможных антигенов. Но зачем дважды делать одну и ту же работу. Примером умения иммунологов иногда сложные вещи объяснять образно и доходчиво является описание, данное активному центру молекулы антитела учеником великого Бернета — также выдающимся австралийским ученым Г. Носселом. Вот оно: "Самой интересной частью молекулы антитела является комбинирующий участок (активный центр), который может быть изображен как мелкий кратер. Он является рабочей частью молекулы. Когда антиген и антитело соединяются, антигенная детерминанта проникает в этот кратер... Существует огромное множество мельчайших деталей, но антиген не ошибается в распознавании и связывании со своим антителом. Только 15 аминокислот образуют непосредственно комбинирующий участок, и все же эта маленькая область, составляющая 2% от целой молекулы, придает ей прекрасную специфичность и уникальную изменчивость... Эта область относится к обеим цепям. Если организму известно, как создать тысячу различных видов как легких, так и тяжелых цепей, то это может привести к образованию миллиона различных антител".
Итак, с помощью Носсела мы преодолели трудности, из которых следуют три важных вывода. Во-первых, не все антитело, а лишь его активный центр несет необходимую специфичность. Во-вторых, разнообразие антител (белков) регулируется не одним, а двумя генами (один ген для тяжёлых, другой — для легких цепей). Этим открытием иммунология вернула свой долг осенявшей ее генетике, в которой до этого властвовал закон "один ген регулирует синтез одного белка" (достойный пример взаимооплодотворяемости наук). И наконец, в-третьих, относительно небольшое число генов в вариациях может дать огромное число новообразованных белков (антител).
Казалось бы, ясно, откуда берется множество антител для разнообразной мозаики природных антигенов. Но вот вопрос: как образуются антитела на синтетические антигены, отсутствующие в природе. Возможность иммунитета к искусственным антигенам доказал еще в 30-х годах К. Ландштейнер. Ведь никогда ранее живые существа с подобными веществами не встречались, закладка клона против них биологически исключена. Значит, если предположить, что теория клонов справедлива для всех натуральных антигенов (к ним от рождения предсуществуют чувствительные антителообразующие клетки), то синтетические антигены служат для нее ахиллесовой пятой.
Читателю из предыдущего изложения уже известно, что последние события в экспериментальной иммунологии заставили думать ученых, что распознавание чужого происходит не иначе как через узнавание своего, измененного этим чужим. И если это окажется действительно так, то можно допустить, что существуют клоны лимфоцитов не к чужим, а к собственным антигенам. И задача этих клонов не реагировать на чужое, а быть толерантными к своему. Иммунологические ответы тех же клонов включаются в тех случаях, когда собственные блоки белков видоизменяются. Проиллюстрируем эту мысль примером.
Для упрощения представим, что в состав формулы антигенов тканевой совместимости организма входят не десять компонентов, а четыре (совсем недавно еще так и думали). Допустим также, что генотип (генетическая формула) данного организма, охраняемый лимфоцитами, состоит из букв, входящих в слово "ТРУД*. Под действием разных чужеродных антигенов может наблюдаться любое изменение букв этого слова:
"ПРУД" (изменилась первая буква),
"ТРУС" (изменилась последняя буква),
"ТРОС" (изменились третья и четвертая буквы),
"ПЛУТ" (изменились первая, вторая и четвертая буквы).
В этих условиях в иммунологическую реакцию включается тот или иной клон лимфоцитов, который ответствен за соответствующий участок (участки?) генетической формулы или за их последовательность. Качественно неодинаковая реакция возникает на варианты, отличающие слово "ТРУД" от слов "ТРУС", "ТРОС", "ТРАЛ", "ТОРС" и т. п.
Формирование клонов — генетически обусловленный процесс, реализующийся в эмбриональном периоде. Поэтому если на этой стадии эмбриона познакомить с какой-то чужой буквой, каковой, например, для русского алфавита служит английская буква J, то он не будет воспринимать ее чужой и создаст соответствующий, оберегающий ее клон лимфоцитов. В последующей жизни присутствие этого знака будет ему нужно для поддержания контролирующего его клона.
С теми тканями, с которыми в эмбриональном периоде лимфоциты эмбириона не имели прямого контакта, толерантности не устанавливается. Это относится к мозгу, семенникам, хрусталику глаза, отделенным от организма особыми барьерами (гемато-энцефалический, тестикулярный), препятствующими проникновению именно лимфоцитов к таким тканям. Зачем биология развития предусмотрела такую особенность для "забарьерных" тканей, пока неясно.