Эта оценка не противоречит оценкам других авторов, касающихся этого существенного времени в истории человечества в эпоху антропогенеза, где первые открытия принадлежат английскому антропологу Лики. В дальнейшем крупный вклад был сделан французской экспедицией, которой руководил Коппен, исследовавший раннюю эпоху становления человечества. Именно в ту эпоху начался гиперболический рост населения нашей планеты, когда его численность увеличивалась пропорционально квадрату населения мира вплоть до нашего времени.
Поэтому, обращаясь к развитию населения как единой динамической системы, мы будем рассматривать выражение (1) не только как обобщение исторических данных, но и как объективную физическую закономерность и математически содержательное выражение. Оно описывает рост населения как самоподобный процесс, развивающийся по гиперболической траектории, поскольку функция роста (1) – однородная функция.
Это свойство, открытое еще Эйлером, указывает на то, что в таких функциях нет характерного внутреннего масштаба. Такой функцией является линейная функция. Однако экспоненциальный рост таким свойством уже не обладает, поскольку он определяется внутренним параметром экспоненциального времени
В случае роста по гиперболе это происходит в далеком прошлом, когда население асимптотически приближается к нулю, либо в то критическое мгновение
В процессе этих исследований исключительную роль сыграл Сергей Павлович Курдюмов. Доклад о росте населения Земли на его семинаре стал прорывом, настоящим откровением для меня и коллектива Института прикладной математики им. М.В. Келдыша. Дело в том, что в современной прикладной математике такие
В режиме с обострением рост происходит быстрее, чем рост по экспоненте, – в этом случае само время экспоненциального роста делается все меньше по мере приближения к критической дате, тогда как при экспоненциальном росте это характерное время постоянно.
Именно Курдюмовым и его коллегами для проблематики режимов с обострением были развиты мощные математические методы, которые открыли возможность для обоснования представлений синергетики, развитые немецким физиком Хакеном для описания процессов развития сложных систем [18]. Эти методы нашли приложение в теории взрывных процессов, ударных волн, в физике фазовых превращений, а также при описании неравновесных процессов развития систем в химической кинетике и теории лазера. Теперь эти представления о нелинейных проблемах в физике сложных систем нашли применение к человечеству в целом, став основанием для новых количественных результатов и поучительных качественных аналогий.
Прежде чем мы обратимся к выводам, следующим из закона гиперболического роста, выясним смысл постоянной величины
Это время = 45 лет – близко к среднему возрасту человека, и в рамках модели оно возникает как полуширина глобального демографического перехода (см. рис. 5). Тогда при построении модели время следует выражать в масштабе = 45 лет и вместо размерной постоянной
Это большой параметр – безразмерное число определяет все соотношения, возникающие при построении теории роста. В дальнейшем во всех выводах теории это число становится главной характеристикой, параметром порядка в той динамической системе, развитие которой мы рассматриваем.