Читаем Патентование изобретений в области высоких и нанотехнологий полностью

В результате разделения каналов грубого и точного совмещения была повышена точность анализа за счет того, что точное совмещение можно было проводить в меньшем диапазоне. Патентование таких устройств и способов не вызвало проблемы, так как в каждом пришлось решать большое количество новых задач.

Кроме этого, появились принципиально новые методы совмещения. Такие, например, когда на РШ 1 (рис. 4.5) формировалась линза Френеля 2, состоящая из прозрачных и непрозрачных участков, расположенных с переменным шагом. На нее с использованием модулятора 3 от лазера 4 подавался качающийся луч 5, который фокусировался линзой 2 и сканировал реперный знак 6 подложки 7. Этот знак мог состоять из нескольких дифракционных решеток, сигнал от которых фиксировался фотоприемником 8 [16]. Таким образом оценивалось рассовмещение РШ 1 относительно подложки 7, которое отрабатывалось системой приводов 9.

Патентование таких систем, очевидно, не вызовет трудностей также по причине решения большого количества решаемых проблем. Это поддержание зазора между РШ 1 и подложкой 7, как минимум в трех точках, анализ трех реперных знаков 6 подложки 7, отработка рассовмещения по плоскости подложки 7 и по углу разворота в этой плоскости, термостабилизация, замена подложек и многое другое.

Также оригинальным решением было использовать сканирующий зондовый микроскоп (СЗМ) для совмещения рентгеношаблона 1 (рис. 4.6) с подложкой 2. В этом случае на РШ 1 формировались кантилеверы 3, которые фиксировали рассовмещение реперных знаков 4 подложки 2 относительно РШ 1 [19, 20]. Система приводов 5 отрабатывала рассовмещение и поддерживала зазор между РШ 1 и подложкой 2. Здесь ко всем перечисленным проблемам предыдущей системы добавлялось особо точное поддержание этого зазора для обеспечения функционирования работы СЗМ.

Рис. 4.6. Система совмещения на основе СЗМ: 1 – рентгеношаблон; 2 – подложка; 3 – кантилевер; 4 – реперные знаки подложки; 5 – система приводов

Рис. 4.7. Модернизированный интерферометр Майкельсона: 1 – лазер; 2, 3, 4 – оптические модули; 5 – уголковый отражатель; 6 – фотоприемник

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Яу Шинтан

Технические науки / Образование и наука