Ученые сопоставили полученные значения π
s с биологическими и другими характеристиками видов. Биологических характеристик было шесть: размер взрослой особи, масса тела, максимальная продолжительность жизни, подвижность (расселительная способность) взрослых особей, плодовитость и размер так называемой пропагулы (то есть особи на той стадии жизненного цикла, когда животное покидает родителей и переходит к самостоятельному существованию: у кого-то это беззащитная икринка, у кого-то — почти взрослая, тщательно выкормленная и выпестованная родителями молодь). Биогеографические и экологические характеристики были выбраны следующие: площадь ареала, приуроченность к широтным зонам, водный или наземный образ жизни.Никакой корреляции полиморфизма с биогеографическими и экологическими показателями обнаружить не удалось. А все шесть биологических характеристик, напротив, достоверно коррелируют с полиморфизмом, в совокупности объясняя 73 % вариабельности видов по показателю π
s. Наилучшим предиктором полиморфизма, намного превосходящим в этом отношении остальные пять переменных, оказался размер пропагулы (рис. 19.1).Это и есть главная закономерность, обнаруженная исследователями: чем более крупных потомков выпускают родители в мир, тем ниже (в среднем) генетический полиморфизм вида. Размер пропагулы, в свою очередь, отрицательно коррелирует с плодовитостью, причем эта корреляция весьма сильна. Что неудивительно: мелких икринок вы можете выметать хоть миллион, а попробуйте-ка вырастить миллион слонят.
рис. 19.1.
Размер пропагулы коррелирует с уровнем генетического полиморфизма (πs). По рисунку из Romiguier et al., 2014.
Таким образом, низкий полиморфизм характерен для животных, производящих небольшое число тщательно выпестованных, хорошо подготовленных к самостоятельной жизни потомков (это называют K
-стратегией), а высокий — для тех, кто производит множество мелких и слабых потомков, бросая их на произвол судьбы (r-стратегия).Размер взрослого животного коррелирует с полиморфизмом намного слабее. Это неожиданный результат, потому что размер взрослой особи, как правило, отрицательно коррелирует с численностью, то есть популяции крупных животных в среднем имеют меньшую численность. А меньшая численность предполагает пониженный полиморфизм. Поэтому логично было бы ожидать, что именно размер взрослого животного будет наилучшим предиктором полиморфизма, — но нет, эта логичная гипотеза не подтвердилась. Среди видов с низким полиморфизмом есть как мелкие животные, так и крупные. Виды одинакового размера могут иметь контрастно различающиеся уровни полиморфизма, если одни из этих видов — K
-стратеги, а другие — r-стратеги. Например, из пяти рассмотренных видов морских ежей два не заботятся о потомстве, производя много мелких яйцеклеток с небольшим количеством желтка, и поэтому их потомкам приходится начинать самостоятельную жизнь в виде крохотных, питающихся бактериальным планктоном личинок — эхиноплутеусов. Три других вида относятся к «сумчатым» морским ежам, чьи самки производят крупные, богатые желтком яйца и вынашивают молодь в специальных выводковых камерах, представляющих собой видоизмененные органы дыхания. У этих видов пропагула, переходящая к самостоятельной жизни, — это уже вполне сформированный морской ежик диаметром в несколько миллиметров. Соответственно, у первых двух видов полиморфизм высокий, у трех остальных — низкий. При этом по размеру взрослых особей все пять видов мало отличаются друг от друга. Аналогичная картина характерна для K— и r-стратегов среди офиур, немертин, насекомых и др.Что касается насекомых, то в категорию K
-стратегов здесь попали эусоциальные виды: термиты, пчелы, муравьи. В данном случае очевидно, что по размеру взрослой особи нельзя судить об эффективной численности (Ne): численность (N) муравьев может быть очень высокой, что соответствует их небольшим размерам, но размножаются из них лишь немногие (Ne << N). Понятно, что K-стратегия, обусловленная эусоциальностью, ведет к резкому снижению Ne. В других случаях негативное влияние К-стратегии на Ne не столь очевидно.Тем не менее авторы данной работы полагают, что обнаруженная связь между K
-стратегией и низким полиморфизмом обусловлена именно отрицательным влиянием K-стратегии на эффективную численность, даже если природа этого влияния пока непонятна. Альтернативное объяснение могло бы состоять в том, что для K-стратегов характерен пониженный темп мутагенеза. Однако факты говорят скорее об обратном: темп мутагенеза (среднее число мутаций на геном за поколение), судя по всему, у K-стратегов выше, чем у r-стратегов. Одна из причин состоит в том, что K-стратеги живут в среднем дольше, а поколения у них разделены бóльшим числом клеточных делений. Так что различия в темпах мутагенеза скорее должны ослаблять, чем усиливать, найденную отрицательную корреляцию между вкладом в потомство и полиморфизмом.