Конец эпохи распада отмечен распадом протонов и превращением обычного барионного вещества в излучение. Учитывая предполагаемое время жизни протона, этот источник лучистой энергии начинает доминировать в универсальном фоне в тридцать первую космологическую декаду. Характеристическая длина волны этого излучения начинается примерно с одного дюйма и в процессе беспрестанного расширения Вселенной со временем увеличивается.
Наконец, где-то в районе шестидесятой космологической декады испаряются черные дыры, и их масса покоя, в конце концов, преобразуется в фотоны и нейтрино, которые на кое-то время преобладают в общем фоне излучения. Черные дыры с массами звезд испускают излучения с характеристической длиной волны в несколько километров, что сравнимо с их радиальным размером. Черные дыры с более высокой массой имеют, соответственно, более низкие температуры и излучение с более длинными волнами. «Чудовища», которые весят как миллиард Солнц, — черные дыры, в настоящее время обитающие в центрах активных галактик, — имеют характеристические длины волн в миллиарды километров, что приблизительно равно размеру нашей Солнечной системы. Все это излучение, ясное дело, вытягивается в процессе непрерывного расширения фонового пространства-времени Вселенной.
Тепловая смерть
Процессы, происходящие в нашей Вселенной, постепенно замедляются по мере того, как она приближается к эпохе вечной тьмы. Но остановятся ли они когда-нибудь полностью или просто замедлятся настолько, что Вселенная перестанет быть интересным местом? Можем ли мы достигнуть какого-то времени в будущем, когда не происходит совсем ничего интересного? Из-за своей тесной связи с термодинамикой идея о замедлении Вселенной до полной остановки называется
Как же происходит эта тепловая смерть? Второй закон термодинамики гласит, что общая энтропия физической системы никогда не уменьшается (в этом случае системой является вся Вселенная). Однако энтропия может оставаться постоянной и не меняться со временем. Проблема в том, что физические процессы, которые не создают энтропию, обычно не особенно интересны. Таким образом, в общем случае нам хотелось бы, чтобы Вселенная изобиловала процессами, образующими энтропию. Все физические системы имеют тенденцию достигать состояния термодинамического равновесия, соответствующего состоянию максимальной энтропии. В состоянии термодинамического равновесия все части физической системы имеют одинаковую температуру и энтропия остается строго постоянной. Таким образом, если будет достигнуто термодинамическое равновесие, во Вселенной прекратятся интересные процессы.
Современная Вселенная достаточно далека от состояния термодинамического равновесия. Фоновая температура Вселенной невысока: всего три градуса Кельвина, примерно на 270 градусов ниже точки замерзания воды (по шкале Цельсия). Этот холодный фон служит резким контрастом по сравнению с пылающими поверхностями звезд, имеющими широкий диапазон температур от четырех до сорока тысяч градусов Кельвина. Такая неравновесная природа Вселенной разрешает интересные процессы. Тепло переходит от горячих поверхностей звезд в космическое пространство, согревая планеты, управляя погодой в их атмосферах и даже позволяя зарождение и развитие жизни. Вселенная работает как гигантский тепловой двигатель. И разница температур жизненно необходима. Если бы Вселенная достигла состояния теплового равновесия и приобрела постоянную температуру в каждой точке пространства, то она утратила бы возможность выполнять работу, что исключило бы интересные процессы вроде биологической эволюции.
А. А. Писарев , А. В. Меликсетов , Александр Андреевич Писарев , Арлен Ваагович Меликсетов , З. Г. Лапина , Зинаида Григорьевна Лапина , Л. Васильев , Леонид Сергеевич Васильев , Чарлз Патрик Фицджералд
Культурология / История / Научная литература / Педагогика / Прочая научная литература / Образование и наука