Читаем Пять возрастов Вселенной полностью

При обсуждении термодинамики часто возникает широко распространенное ошибочное представление — мнимый парадокс, связанный с тем, как вообще могут образоваться хоть какие-то сложные структуры, когда закон требует, чтобы энтропия возрастала всегда. Ведь энтропия — это все-таки мера беспорядка системы. Если же сложные системы являются высоко упорядоченными, как они вообще могут возникнуть, не нарушая закона об увеличении энтропии? Этот мнимый парадокс решается легко: увеличиваться должна общая энтропия системы, а энтропия одной ее части может уменьшаться, вследствие чего одна ее часть может стать высоко упорядоченной. Но если одна часть системы становится высоко упорядоченной и теряет энтропию, система в целом должна заплатить за это, в целях компенсации увеличив свою энтропию в какой-то другой части.

В контексте современной космологии температура Вселенной постоянно изменяется, в силу чего существенно варьируется и ответ на вопрос о тепловой смерти. Непрерывно расширяющаяся Вселенная никогда не достигает истинного термодинамического равновесия, т. к. она никогда не приобретает постоянной температуры. Из-за расширения фоновая температура Вселенной продолжает падать. Таким образом, Вселенная явно избегает классической тепловой смерти. Однако расширяющаяся Вселенная, в принципе, может стать чисто адиабатической, а это означает, что энтропия данной области Вселенной остается постоянной. В этом случае Вселенная все равно имеет все шансы стать скучным и мертвым местом, лишенным всяческой способности к выполнению физической работы. Последнюю возможность мы называем космологической тепловой смертью: это фактическая тепловая смерть Вселенной, даже несмотря на то, что ее температура не постоянна. Как мы отмечаем на протяжении всей этой книги, интересные космологические процессы продолжают вырабатывать энергию и энтропию в нашей Вселенной, по крайней мере, до сотой космологической декады. Так что космологическая тепловая смерть откладывается до того времени, когда Вселенная вступает в эпоху вечной тьмы.

Механизмы образования энергии и энтропии, доступные Вселенной, зависят от вида долгосрочной эволюции. В случае замкнутой Вселенной она, в конечном итоге, пережила бы повторный коллапс и закончила свой жизненный путь в Большом сжатии, поэтому вопрос о долгосрочном образовании энтропии даже бы не возник. Интересные физические процессы продолжались бы во Вселенной до самого последнего мгновения Большого сжатия. Некоторая доля иронии присутствует в терминологии этого повествования: замкнутая Вселенная может избежать оскорбительной тепловой смерти даже тогда, когда ее сложные структуры испаряются под действием сильного лучистого тепла, образующегося в результате катастрофического коллапса.

В случае плоской Вселенной, которая замедляется, продолжая расширяться, на космологическом горизонте появляются и становятся связанными действием гравитации космические структуры постоянно увеличивающегося размера и массы. Поскольку расширение Вселенной замедляется, гравитация, по мере старения Вселенной, получает шанс стягивать материал все с больших и больших расстояний. В плоской Вселенной космические структуры гигантских размеров могут образовываться даже в эпоху вечной тьмы. Конечно же, эпоха вечной тьмы не обязательно абсолютно темна. Некоторые из этих огромных космических структур, в принципе, могут коллапсировать, образуя черные дыры, а следовательно, предыдущая эпоха черных дыр в действительности может вообще не закончиться. Может случиться и так, хотя гарантировать этого мы не можем, что черные дыры будут образовываться быстрее, чем испаряться. В этом случае Вселенная могла бы продолжить поддерживать различные процессы, используя энергию, образующуюся в результате испарения Хокинга этих чудовищных черных дыр. Таким образом, Вселенная, по крайне мере в принципе, может избежать космологической тепловой смерти, пока остается почти плоской. В этом случае война между гравитацией и термодинамикой переходит в патовую ситуацию. Гравитация непрерывно создает все более крупные гравитационно связанные структуры — черные дыры — и одерживает временную победу. Однако каждой отдельной структуре суждено испариться, что приведет к окончательной победе термодинамики и производству энтропии.

С другой стороны, если Вселенная открыта, скорость ее расширения достигает постоянного значения, и гравитация явно проигрывает свое сражение с этим расширением: она уже не может конкурировать с ним. Образование космических структур прекращается на каком-то определенном масштабе, а для продолжения образования черных дыр или любых космических структур возникают серьезные препятствия. Для этого случая вопросы долгосрочного производства энтропии и космологической тепловой смерти Вселенной по-прежнему открыты. И хотя эти перспективы могут показаться довольно унылыми, во Вселенной по-прежнему остается много захватывающих новых возможностей.

Жизнь и смерть позитрония

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература