Читаем Пять возрастов Вселенной полностью

Вероятно, самым оживленным действом в эпоху вечной тьмы будут процессы с участием атомов позитрония. В отсутствие протонов и нейтронов обычные атомы невозможны. С другой стороны, в относительно больших количествах будут существовать позитроны — положительно заряженные антиматериальные партнеры электронов. Электроны и позитроны могут объединиться в атомные структуры, аналогичные традиционным атомам водорода, состоящим из одного протона и одного электрона. Атом, образованный позитроном и электроном, называется позитронием.

Атомные свойства позитрония заметно отличаются от свойств традиционных атомов в двух отношениях. Поскольку масса позитрона в две тысячи раз меньше массы протона, изменяются орбиты электронов. Таким образом, химия позитрония весьма отличается от химии водорода. Однако гораздо важнее то, что позитрон и электрон могут аннигилировать друг с другом, на что не способны протон и электрон в обычном водородном атоме. Так что судьба атомов позитрония решается в момент их образования. При наличии достаточного времени электрон и позитрон должны аннигилировать друг с другом, образуя крошечный выброс излучения.

Синтез атомов позитрония в земных лабораториях — дело довольно обычное. Обычно эти атомы создаются в низкоэнергетических состояниях и имеют микроскопические размеры, примерно сравнимые с размером обычных атомов. Эти микроскопические атомы позитрония живут лишь крошечную долю секунды, по истечении которой исчезают из Вселенной в результате аннигиляции. Это короткое время жизни, крайне неудовлетворительное для нас, обусловлено крошечным размером, с которым рождаются эти атомы.

К счастью, в очень поздней Вселенной фоновая плотность сильно размыта и образующиеся атомы позитрония имеют орбиты невероятно больших радиусов. Типичный размер позитрония, образованного в эпоху вечной тьмы, составляет триллионы световых лет — больше, чем вся видимая сегодня Вселенная. Предполагается, что образование позитрония этого типа начнется где-то около семьдесят первой космологической декады. Эти огромные атомы рождаются в состояниях относительно высоких энергий по сравнению с микроскопическими атомами позитрония, которые так быстро распадаются. Электрон и позитрон медленно вращаются вокруг друг друга и постепенно отдают чрезвычайно маленькие количества излучения при постоянном уменьшении их орбит. Эти частицы кружатся в экзотическом танце, который в конечном итоге приводит к полному разрушению его участников и абсолютному краху накопленной ими энергии. Атомы позитрония с такими огромными начальными размерами распадаются по истечении довольно долгого промежутка времени — около ста сорока пяти космологических декад. Таким образом, будущая Вселенная содержит окно времени, в течение которого позитроний может образоваться и существовать, до того как произойдет его неизбежное саморазрушение. Середина этого окна приходится примерно на сотую космологическую декаду — время, когда, напоследок вспыхнув, Вселенную покидают черные дыры с галактическими массами.

Здесь возникает важный вопрос: способны ли эти атомы позитрония, или, быть может, еще более необычные атомные структуры будущего, объединиться, образуя хоть какие-то сложные объекты. Возможны ли в этом темном будущем процессы, хотя бы отдаленно напоминающие химические реакции, которые мы видим на Земле сегодня? Достаточно ли ста сорока пяти космологических декад, чтобы произошла какая-либо «биологическая» эволюция? Как выглядели бы формы жизни, существующие в эту эпоху? Эти вопросы остаются без ответа, но именно в них содержится ключ к возможным жизненным процессам в эпоху вечной тьмы.

Образование и окончательное разрушение позитрония представляет собой еще один этап непрерывной борьбы гравитации и термодинамики — противостояние, которое существует и в эпоху вечной тьмы. В эту позднюю эпоху образование позитрония, в сущности, обусловлено электрическим притяжением частиц, хотя силы гравитации могут объединять даже большие группы частиц. Несмотря на то, что, по меркам современной Вселенной, эти атомы позитрония — истинные долгожители, они представляют собой преходящие структуры и все равно распадутся, превратясь в излучение. Таким образом, — неизбежная гибель позитрония — это еще одна победа термодинамики и производства энтропии. И вновь, в конечном итоге, торжествует беспорядок.

Бесконечная аннигиляция

Иллюстрацией к тому, как Вселенная продолжает действовать, хотя и замедляется, служит простой процесс аннигиляции частиц. В результате аннигиляции масса-энергия превращается в излучение и тем самым обеспечивает источник энергии для Вселенной. Аналогичным образом, в наши дни Солнце является источником энергии для Земли, а звезды — для Вселенной, хотя и в очень разных масштабах.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература