Читаем Пятьсот двадцать головоломок полностью

20. Задача сводится к решению неопределенного уравнения 344x = 265y + 33. Методы решения таких уравнений известны достаточно хорошо, поэтому мы не будем на них останавливаться. Решив уравнение, найдем, что x = 252 и y = 327. Итак, если торговец купит 252 лошади по 344 доллара и 327 волов по 265 долларов, то лошади обойдутся ему на 33 доллара дороже, чем волы.

21. Было куплено 75 индюков по 80 центов за штуку на общую сумму 60 долларов. Оставив себе 15 птиц, фермер продал оставшихся 60 индюков по 90 центов за штуку, всего на сумму 54 доллара, как и требовалось. Таким образом, он получил по 10 центов прибыли с каждой из перепроданных 60 птиц.

22. Бакалейщик отложил на черный день 168 бумажных долларов, 168 монет по полдоллара и 168 монет по четверти доллара на общую сумму 294 доллара. В каждом из шести мешков должно быть по 28 денежных знаков каждого типа; в каждом из семи мешков — по 24 и в каждом из восьми мешков — по 21 денежному знаку каждого типа.

23. Объяснение простое. Каждый способ продажи приведет к одинаковым результатам лишь в том случае, если число яблок, проданных по три штуки на цент, будет относиться к числу яблок, проданных по две штуки на цент, как 3 к 2.

Так, например, если бы у первой торговки осталось 36 яблок, а у второй 24, то выручка составила бы 24 цента вне зависимости от того, продали бы они эти яблоки сами или это сделала бы их подруга. Однако если они отдадут подруге по равному числу яблок, то потеря в выручке составит 1 цент на каждые 60 штук. Таким образом, если бы они оставили подруге по 60 штук, то потеряли бы на этом 2 цента. Если бы они дали ей 180 штук (по 90 каждая), то потери составили бы 3 цента и т. д.

Утрата одного цента в нашем случае происходит по той причине, что торговка, продававшая по три яблока на цент, выигрывает 2 цента, а та, которая продавала по два яблока на цент, теряет 3 цента.

Возможно, самым справедливым было бы поделить выручку в 24 цента, дав первой торговке 9½ цента, а второй 14½ цента, то есть так, чтобы каждая потеряла по ½ цента на всей операции.

24. Общая сумма взносов, выраженная в центах, равна 300 737. Это число представимо в виде произведения двух простых сомножителей: 311 и 967. Поскольку нам известно, что в Лиге Красной Смерти не более 500 членов, то число членов равно 311, а взнос составляет 967 центов, или 9 долларов 67 центов.

Других решений быть не может.

25. Цыпленок стоит 2 доллара, утка 4 и гусь 5 долларов.

26. У каждого мальчика вначале было 12 центов, и он дал по 1 центу каждой девочке. У каждой девочки было 36 центов, из которых она дала по 3 цента каждому мальчику. После этого у всех детей стало по 18 центов.

27. Костюм Мелвилла стоил 150 долларов, причем пиджак стоил 75, брюки 50 и жилет 25 долларов.

28. У Ричарда было 4 доллара, а у Джона — 2 доллара 50 центов.

29. Сотня яблок стоила 96 центов.

30. По истечении 18 лет капитал равнялся 22 781 доллару 25 центам.

31. Поскольку одна и та же фальшивая банкнота участвовала во всех операциях, то все они оказались недействительными. Следовательно, каждый остался по отношению к своему должнику в том же положении, что и до того момента, как банкир нашел банкноту. Кроме того, мясник еще должен фермеру 5 долларов за теленка[29].

32. Тому 7 лет, а Мэри 13 лет.

33. Миссис Вильсон 39 лет, Эдгару — 21, Джеймсу — 18, Джону — 18, Этель — 12, Дейзи 9 лет. Ясно, что Джеймс и Джон — одногодки.

34. Де Морган родился в 1806 г. Когда ему было 43 года, то текущий год равнялся квадрату его возраста — 1849. Дженкинс родился в 1860 г. Ему было 52 + 62 (61) лет в 54 + 64 (1921) году. В 2 × 312 (1922) году ему исполнилось 2 × 31 (62) года. И, наконец, его возраст был равен 3 × 5 (15) годам в 3 × 54 (1875) году.

35. Больным было соответственно 64 и 20 лет.

36. Демохар прожил 60 лет.

37. Отцу и матери было по 36 лет, а трое детей были шестилетними близнецами. Суммарный возраст равен как раз 90 годам, и все остальные условия задачи также выполнены.

38. Майку сейчас 1, Пэту 29, и Бидди 24 года. Когда Пэт под окном своей гостиной построил свинарник (7 года назад), Майку было 3, Пэту 22 и Бидди 17 года. Через 11 года Майку будет 22 (столько, сколько было Пэту, когда он построил свинарник). Пэту будет 41 и Бидди 36 года, что в сумме составит 100 лет.

39. 30 и 12 лет.

40. Мальчику 10, а сестре 4 года.

41. Детям было соответственно 2, 5, 8, 11, 14, 17, 20, 23, 26 лет, а отцу 48 лет.

42. Человек родился в 1856 г. и умер в 1920 г., достигнув возраста 64 лет. Пусть x — возраст в момент смерти. Тогда 29x — дата рождения. Дата рождения плюс возраст составят дату смерти: 29x + x = 30x. Далее, из условия задачи ясно, что человек был жив в 1900 г. и умер к 1930 г. Поэтому смерть произошла между этими датами, а поскольку дата равна 30x:, то она делится на 30. Следовательно, этой датой может быть только 1920 г., что при делении на 30 дает 64. Итак, в 1900 г. человеку было 44 года.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг