Читаем Пятьсот двадцать головоломок полностью

43. Читатель родился в полдень 19 февраля 1873 г. и к полудню 11 ноября 1928 г. прожил по 10 176½ дня в каждом веке. Разумеется, XIX в. закончился в полночь 31 декабря 1900 г., который не был високосным, а 11 ноября 1928 г. читателю исполнилось 55 лет и (приблизительно) 9 месяцев.

44. Между рождением Клеопатры и смертью Боадицеи прошло 129 лет, но, поскольку их суммарный возраст равнялся всего лишь 100 годам, был период времени в 29 лет, когда ни одной из них не было на свете (то есть период между смертью Клеопатры и рождением Боадицеи). Следовательно, Боадицея родилась через 29 лет после смерти Клеопатры, последовавшей в 30 г. до н. э., а именно в 1 г. н. э.

45. Робинсону 32 года, его брату — 34, сестре — 38, а матери 52 года.

46. Если бы это были обыкновенные часы, то они показывали бы 4 ч 23 мин. Но поскольку минутная стрелка двигалась в направлении, противоположном часовой, то истинное время составляло 4 ч 36 мин. Чтобы получить истинное время, надо из 60 вычесть то количество минут, которое показывают часы.

47. Это бывает в 9 ч 6¾ мин, когда часовая стрелка проходит путь в 45 (6¾ в квадрате) минутного деления (после XII). Если бы мы допустили дроби, меньшие одной минуты, то нашлось бы еще одно решение, а именно: 12 ч 5 с ( мин).

48. Впервые это произойдет в 12 ч 5 мин, что можно будет неправильно истолковать (из-за идентичности стрелок) как 1 ч мин.

49. Если циферблат треснет так, как показано на рисунке, то сумма цифр в каждой из четырех частей будет равна 20. Искушенный читатель сразу заметит, что поскольку три десятки (римская цифра X имеется ввиду и в числах IX и XI) соседствуют друг с другом, то две из них должны быть объединены в одной части. Это можно сделать двумя способами.

[В первом издании своих занимательных задач Дьюдени дал воистину дьявольское решение этой головоломки: IX надо было рассматривать вверх ногами и истолковывать как XI[30]. (Именно так и делается на исходном рисунке.) Позже автор привел решение, показанное здесь. Существует еще двенадцать решений. Читателю предлагается самому отыскать их.

Предполагается, что римские цифры неподвижно прикреплены к ободку циферблата. Трещина может пересекать цифру, как показано на рисунке, но не может окружить какую-либо цифру, отделив ее от ободка. — М. Г.]

50. Вечер начался в 10 ч 59 мин, а когда гости посмотрели на стрелки, поменявшиеся местами, те показывали 11 ч 54 мин.

51. Истинное время равнялось 2 ч 5 мин.

52. В 3 ч 23 мин.

53. В 3 ч 41 мин.

54. Для того чтобы угол между стрелками был прямым, минутная стрелка должна быть точно на 15 мин впереди или сзади часовой. Каждое из этих положений встретится за 12 ч 11 раз, то есть через каждые 1 ч 5 мин. Если восемь таких промежутков времени пройдет после 9 ч, то часы будут показывать 5 ч 43 мин. С другой стороны, если после 3 ч пройдет два таких промежутка, то мы получим 5 ч 43 мин. Это и есть те два момента времени, которые требовалось найти в задаче, причем второй момент наступит, разумеется, раньше первого.

55. В 8 ч 23 мин и в 4 ч 41 мин. В головоломках с часами мы исходим из предположения, что на часах можно определить дробные доли минуты.

56. До вершины холма 6¾ км. Вверх Вилли-Лежебока взбирался 4½ ч, а вниз спустился за 1½ ч.

57. Поскольку человек проходит 27 шагов за то время, за которое автомобиль проезжает расстояние в 162 шага, ясно, что автомобиль движется в 6 раз быстрее человека. Человек движется со скоростью 3½ км/ч; следовательно, скорость автомобиля 21 км/ч.

58. Если бы каждый бегун, достигнув верхней площадки лестницы, сделал целое число полных шагов и неукороченный последний шаг, то наименьшим возможным числом ступенек было бы, конечно, 60 (3 × 4 × 5). Но из исходного рисунка видно, что у А, шагающего через 3 ступеньки, последний шаг будет длиной лишь в одну ступеньку. Б, перепрыгивающий через 4 ступеньки, на последнем шаге преодолеет всего лишь 3 ступеньки. И К, перепрыгивающему по 5 ступенек, на последнем шаге останется перескочить только через 4 ступеньки. Следовательно, нам надо найти наименьшее число, которое при делении на 3 дает в остатке 1, при делении на 4 дает 3 и при делении на 5 дает остаток, равный 4. Это число равно 19. Таким образом, лестница содержит 19 ступенек, из которых только 4 не изображены на рисунке.

59. Надо заметить (и в этом ключ к решению), что человек из Б. проходит 7 км за то же время, за которое человек из Э. проходит 5 км. Пусть, к примеру, расстояние между городами 24 км, тогда они встретились на расстоянии 14 км от Э. Человек из Э. двигался со скоростью 3 км/ч, а человек из Б. — со скоростью 4⅘ км/ч. Оба закончили свой путь в 7 час. вечера.

60. Велосипедист проедет один километр за 3 мин, или со скоростью км/мин. Ветер изменяет его скорость на км/мин. Следовательно, по ветру он движется со скоростью км/мин, а против ветра — со скоростью км/мин, так что 1 км он проезжает за 3 и за 4 мин соответственно, как и утверждалось.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг