43. Читатель родился в полдень 19 февраля 1873 г. и к полудню 11 ноября 1928 г. прожил по 10 176½ дня в каждом веке. Разумеется, XIX в. закончился в полночь 31 декабря 1900 г., который не был високосным, а 11 ноября 1928 г. читателю исполнилось 55 лет и (приблизительно) 9 месяцев.
44. Между рождением Клеопатры и смертью Боадицеи прошло 129 лет, но, поскольку их суммарный возраст равнялся всего лишь 100 годам, был период времени в 29 лет, когда ни одной из них не было на свете (то есть период между смертью Клеопатры и рождением Боадицеи). Следовательно, Боадицея родилась через 29 лет после смерти Клеопатры, последовавшей в 30 г. до н. э., а именно в 1 г. н. э.
45. Робинсону 32 года, его брату — 34, сестре — 38, а матери 52 года.
46. Если бы это были обыкновенные часы, то они показывали бы 4 ч 23
47. Это бывает в 9 ч 6¾ мин, когда часовая стрелка проходит путь в 45
48. Впервые это произойдет в 12 ч 5
49. Если циферблат треснет так, как показано на рисунке, то сумма цифр в каждой из четырех частей будет равна 20. Искушенный читатель сразу заметит, что поскольку три десятки (римская цифра X имеется ввиду и в числах IX и XI) соседствуют друг с другом, то две из них должны быть объединены в одной части. Это можно сделать двумя способами.
[В первом издании своих занимательных задач Дьюдени дал воистину дьявольское решение этой головоломки: IX надо было рассматривать вверх ногами и истолковывать как XI[30]. (Именно так и делается на исходном рисунке.) Позже автор привел решение, показанное здесь. Существует еще двенадцать решений. Читателю предлагается самому отыскать их.
Предполагается, что римские цифры неподвижно прикреплены к ободку циферблата. Трещина может пересекать цифру, как показано на рисунке, но не может окружить какую-либо цифру, отделив ее от ободка. — М. Г.]
50. Вечер начался в 10 ч 59
51. Истинное время равнялось 2 ч 5
52. В 3 ч 23
53. В 3 ч 41
54. Для того чтобы угол между стрелками был прямым, минутная стрелка должна быть точно на 15 мин впереди или сзади часовой. Каждое из этих положений встретится за 12 ч 11 раз, то есть через каждые 1 ч 5
55. В 8 ч 23
56. До вершины холма 6¾ км. Вверх Вилли-Лежебока взбирался 4½ ч, а вниз спустился за 1½ ч.
57. Поскольку человек проходит 27 шагов за то время, за которое автомобиль проезжает расстояние в 162 шага, ясно, что автомобиль движется в 6 раз быстрее человека. Человек движется со скоростью 3½ км/ч; следовательно, скорость автомобиля 21 км/ч.
58. Если бы каждый бегун, достигнув верхней площадки лестницы, сделал целое число полных шагов и неукороченный последний шаг, то наименьшим возможным числом ступенек было бы, конечно, 60 (3 × 4 × 5). Но из исходного рисунка видно, что у А, шагающего через 3 ступеньки, последний шаг будет длиной лишь в одну ступеньку. Б, перепрыгивающий через 4 ступеньки, на последнем шаге преодолеет всего лишь 3 ступеньки. И К, перепрыгивающему по 5 ступенек, на последнем шаге останется перескочить только через 4 ступеньки. Следовательно, нам надо найти наименьшее число, которое при делении на 3 дает в остатке 1, при делении на 4 дает 3 и при делении на 5 дает остаток, равный 4. Это число равно 19. Таким образом, лестница содержит 19 ступенек, из которых только 4 не изображены на рисунке.
59. Надо заметить (и в этом ключ к решению), что человек из Б. проходит 7 км за то же время, за которое человек из Э. проходит 5 км. Пусть, к примеру, расстояние между городами 24 км, тогда они встретились на расстоянии 14 км от Э. Человек из Э. двигался со скоростью 3
60. Велосипедист проедет один километр за 3