Читаем По следам сенсаций полностью

На рубеже XIX и XX столетий выяснилось, что логические рассуждения, которыми оперировал Кантор, ведут к неразрешимым противоречиям. Первый нокаут канторовские построения получили от итальянского учёного Бурали-Форти, сформулировавшего парадокс наибольшего порядкового числа. Однако настоящей сенсацией оказалась знаменитая антиномия Рассела, опубликованная в 1903 году и получившая широкую известность под названием «парадокса брадобрея».

Солдату приказали стать полковым цирюльником. Приказ строжайше предписывал брить тех и только тех, кто не бреется сам. За невыполнение — смертная казнь. Солдат исправно нёс нехитрую службу парикмахера ровно один день. На следующее утро, проведя ладонью по подбородку, он взялся за лезвие и кисточку, чтобы придать своим щекам былой глянец, но… вовремя спохватился. Начни он скоблить собственную щетину, быть ему в числе тех, кто бреется сам. И тогда он в соответствии с грозным распоряжением начальства не должен себя брить. Если же он откажется себя брить, то станет одним из тех, кто сам не бреется и кого как раз он-то и обязан брить! Как же поступить бедняге брадобрею?!

Разумеется, перед нами шутливое иносказание настоящего парадокса. На самом деле формулировка его более строга.

Существуют множества, которые могут содержать сами себя в качестве элемента. Назовём их необыкновенными. Вчитайтесь, к примеру, в такое определение: «Множество А включает в себя все множества, которые можно определить предложением, содержащим меньше двадцати слов». Только что приведённая фраза содержит всего 15 слов. Значит, само множество А тоже является элементом множества А! Разумеется, перед нами курьёзное исключение. Большинство совокупностей обыкновении — не содержат себя в качестве элемента. Давайте пока ограничимся только такими пай-множествами, которые вроде бы не сулят никакого подвоха. И рассмотрим множество всех обыкновенных множеств. Обозначим его буквой М. Предлагается ответить: само М — обыкновенное или необыкновенное? Бесспорно, оно должно быть либо тем, либо другим — третьего не дано. Допустим, что М — обыкновенное множество. Тогда оно должно содержать себя в качестве, элемента: ведь М, по определению, множество всех до единого обыкновенных множеств. — Но если оно включает самое себя, значит, перед нами необыкновенное множество! Ладно, пусть будет таковым. Стоп… Что же получилось: необыкновенное М входит в множество всех обыкновенных множеств? Но ведь мы же договорились вообще не иметь дела с необыкновенными множествами! М, по определению, не имеет права входить в множество всех и одних только обыкновенных множеств! А уж если оно угодило туда, пусть изволит стать обыкновенным. Остаётся одно: объявить множество М обыкновенным и… начать сызнова «сказку про белого бычка». Как видно, в отличие от своего севильского коллеги из бессмертной трилогии Бомарше Фигаро лорда Рассела занялся интригами на более высоком уровне — в области логики и математики.

Парадоксы теории множеств заставили математику ревизовать свои логические устои.

Как известно, ахиллесовой пятой канторовской теории множеств был её неконструктивный характер. Кантору ставили в упрёк, что он прибегал к доказательству от противного. Он обосновывал истинность фундаментальнейших выводов своей теории не прямо, а косвенно — демонстрируя абсурдность противоположного утверждения. До поры до времени это казалось убедительным. В самом деле, если одно из двух взаимоисключающих предложений ложно, то другое обязательно должно быть истинным. По крайней мере так гласил закон исключённого третьего. Приём редукцио ад абсурдум (приведение к нелепости) широко практиковался в математике со времён Евклида. Но ведь у Рассела в его парадоксе с брадобреем та же логическая процедура, проверенная тысячелетиями, дала осечку! Так почему же, спрашивается, она не могла подвести и Кантора? Неужто и впрямь… «движенья нет»? Во всяком случае, в логике опровергателей Зенона, апеллировавших к построениям Кантора…

Но, быть может, противоречия были порождены чересчур вольной трактовкой понятия «множество»? А если более строго сформулировать требования к смыслу каждого термина, к каждой логической процедуре? И даже попытаться, если удастся, построить «конструктивную» логику, где не будет закона исключённого третьего и доказательств от противного?

Теорема Гёделя легла в основу целого направления в математике и логике. Сама математическая теория, непротиворечивость которой пытаются обосновать, стала предметом изучения особой «надматематической» науки, названной метаматематикой, или теорией доказательств. Какова природа истины? На каких посылках зиждется сам фундамент математики? Какой смысл имеют математические предложения: аксиомы, леммы, теоремы? Какую логическую структуру должны иметь доказательства? Так попытки разрешить парадоксы столкнулись с более широкой проблемой обоснования математики и логики.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Последнее обращение к человечеству
Последнее обращение к человечеству

Скажи мне, в чём познанья счастье?Скажи мне, в чём величие души?Не в том ли чувстве ожиданья,Что всё, конечно, впереди...Передо мной конечность, бесконечность,Сливаясь воедино, промелькнут,Раскроет тайну свою вечность,И сброшу, наконец, я бремя пут.Душа, открытая Познанью,Достигнет высшей красоты,И сам приду я к пониманьюСвоей несбыточной мечты.Нельзя объять, что необъятно,Но не стремиться нам нельзя.Всё ясно, вроде бы, понятно,А что понятно — и понять нельзя.Свой хрупкий чёлн в познанья океанЯ бросил смело, полный дерзновенья,И получил я всё, что ожидал,И сверх того — вселенных откровенья.Я Высший Разум встретил на пути,И прикоснулся к тайне мирозданья,И испытанья, от которых не уйти,Когда достичь желаешь пониманья...Николай ЛевашовВ своей первой книге автор предлагает читателю новую систему знаний и представлений о законах природы, которые необходимы не только для того, чтобы не разрушать наш дом-планету, но и для понимания каждым думающим человеком, каждым, кто хочет понять и осознать происходящее с ним самим, с людьми, окружающими его дома или на работе. Эта книга для тех, кто стремится проникнуть в тайны природы, понять и осознать чудо зарождения жизни, понять, что такое душа и что происходит с человеком в момент и после смерти. Такие понятия, как душа, сущность, реинкарнация, из понятий мистических «чудесным» образом превращаются в понятия реальные, обусловленные законами эволюции живой материи. Впервые в этой книге даётся объяснение практически всех явлений живой и неживой природы, показано единство законов макро- и микрокосмоса. Автору удалось создать единую теорию поля, объединить в одно целое представления о природе. Книга содержит 182 авторские иллюстрации высокого качества.© Сан-Франциско 2000 годwww.levashov.orgwww.levashov.infowww.levashov.name

Николай Викторович Левашов

Научная литература / Эзотерика, эзотерическая литература
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература