Читаем Почему E=mc²? И почему это должно нас волновать полностью

Мы еще не выясняли, что такое масса, поэтому, прежде чем двигаться дальше, необходимо уточнить смысл этого понятия. На интуитивном уровне массу можно представить как величину, измеряющую количество вещества в чем бы то ни было. Два пакета сахара имеют массу, которая в два раза больше массы одного пакета, и так далее. При желании мы могли бы измерять массу всех без исключения объектов в пересчете на массу стандартного пакета сахара, воспользовавшись для этого старинными чашечными весами. Именно так когда-то продавали бакалейные товары в магазинах. Если вам нужно было купить килограмм картофеля, достаточно было положить его на одну чашу весов, уравновесив с килограммовым пакетом сахара на другой чаше весов, – и все согласились бы с тем, что вы купили требуемое количество картофеля.

Безусловно, «вещество» бывает самых разных типов, поэтому «количество вещества» – крайне неточное понятие. Вот более точное определение: мы можем измерить массу посредством измерения веса. Другими словами, объекты с большим весом имеют и большую массу. Неужели все так просто? И да, и нет. Здесь, на Земле, мы можем определить массу любого объекта, взвесив его, – именно это делают обычные напольные весы. Всем знакома идея о том, что мы «весим» определенное количество килограммов и граммов (или фунтов и унций). Но ученые не согласились бы с этим. Путаница возникает из-за того, что масса и вес приблизительно равны друг другу у поверхности Земли. Но что произойдет, если разместить напольные весы на поверхности Луны? По существу, вы бы весили в таком случае в шесть раз меньше, чем на Земле. Ваш вес на Луне действительно был бы меньше, хотя масса осталась бы неизменной. Что действительно изменилось бы, так это «обменный курс» между массой и весом, хотя в два раза большая масса будет иметь в два раза больший вес, где бы ее ни измеряли (мы говорим, что вес пропорционален массе).

Еще один способ определить массу связан со следующим: для того чтобы привести в движение более массивные объекты, необходимо толкнуть их сильнее. В математической форме этот закон природы был выражен с помощью второго самого известного уравнения (после E = mc², конечно): F = ma (Исаак Ньютон опубликовал эту формулу в 1687 году в своей работе Principia Mathematica[26]). Закон Ньютона гласит, что если вы толкаете что-то с силой F, этот объект двигается с ускорением a. Символом m обозначается масса, а значит, вычислить массу объекта можно экспериментальным путем, измерив силу, которую необходимо к нему приложить, чтобы придать ему соответствующее ускорение. Это определение не хуже остальных, поэтому пока давайте придерживаться его. Правда, если у вас критический ум, вас может заинтересовать, как именно следует трактовать понятие силы. Это хороший вопрос, но мы не будем его анализировать. Давайте просто исходить из предположения, что нам известно, как измерять величину толкания, или тяги, также известную как «сила».

Это было достаточно пространное отступление, и хотя на самом деле мы еще не обсуждали, что представляет собой масса на глубинном уровне, все же дали ей описание в рамках версии школьного учебника. Более всеобъемлющий взгляд на само происхождение массы – тема главы 7, а пока давайте считать, что масса просто существует и это естественное свойство вещей. На данном этапе важно принять предположение, что масса – неотъемлемое свойство любого объекта. Другими словами, в пространстве-времени должна быть величина под названием «масса», по поводу которой все приходят к единому мнению. Следовательно, масса должна быть еще одной из инвариантных величин. Пока мы не приводили никаких аргументов, способных убедить читателя в том, что эта величина обязательно должна быть такой же, как и масса в уравнении Ньютона, однако, как и в случае многих других наших гипотез, обоснованность этого утверждения будет подтверждена или опровергнута, когда мы придем к каким-то выводам. А теперь вернемся к бильярдным шарам.

Если в момент столкновения два шара имеют одинаковую массу и скорость, то их векторы импульса будут одинаковой длины, но ориентированы в противоположных направлениях. Сложите оба вектора – и они полностью аннулируют друг друга. Согласно закону сохранения импульса, что бы ни делали частицы после столкновения, они должны разойтись с одинаковой скоростью в противоположных направлениях. В противном случае результирующий импульс не мог бы сойти на нет. Как мы уже отмечали, закон сохранения импульса распространяется не только на бильярдные шары. Он действует во всей Вселенной и именно поэтому так важен. Откат пушки после выстрела пушечного ядра или выброс осколков во всех направлениях после взрыва – оба события подчиняются закону сохранения импульса. В действительности пример с пушечным ядром заслуживает немного больше внимания с нашей стороны.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Психология подросткового и юношеского возраста
Психология подросткового и юношеского возраста

Предлагаемое учебное пособие объективно отражает современный мировой уровень развития психологии пубертатного возраста – одного из сложнейших и социально значимых разделов возрастной психологии. Превращение ребенка во взрослого – сложный и драматический процесс, на ход которого влияет огромное количество разнообразных факторов: от генетики и физиологии до политики и экологии. Эта книга, выдержавшая за рубежом двенадцать изданий, дает в распоряжение отечественного читателя огромный теоретический, экспериментальный и методологический материал, наработанный западной психологией, медициной, социологией и антропологией, в талантливом и стройном изложении Филипа Райса и Ким Долджин, лучших представителей американской гуманитарной науки.Рекомендуется студентам гуманитарных специальностей, психологам, педагогам, социологам, юристам и социальным работникам. Перевод: Ю. Мирончик, В. Квиткевич

Ким Долджин , Филип Райс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Психология / Образование и наука