А теперь перейдем к заключительной части. Как мы уже не раз подчеркивали, в контексте пространственно-временно
го континуума очень важно исходить из того, что с – это не просто скорость света, а универсальная предельная космическая скорость. В предыдущей главе мы действительно пришли к выводу о том, что c – это скорость света, но только после того, как сравнили ее с результатами, полученными в главе 3. Теперь мы можем сделать это, не прибегая к идеям, выходящим за рамки концепции пространства-времени. Мы попытаемся найти альтернативное толкование постоянной c из уравнения E = mc², которое будет отличаться от понятия «предельная космическая скорость».Ответ может крыться в еще одном невероятном и хорошо замаскированном свойстве уравнения Эйнштейна, описывающего соотношение между массой и энергией. Для проведения дальнейших изысканий нам необходимо отказаться от принятых ранее приближений и записать временну
ю и пространственную составляющие четырехмерного вектора энергии импульса в точной форме. Энергия объекта, являющаяся временной составляющей четырехмерного вектора энергии импульса (умноженная на с), равна γmc², а импульс, который представляет собой пространственную часть четырехмерного вектора энергии-импульса, равен γmv. Теперь зададим вопрос, который на первый взгляд может показаться странным: что произойдет, если объект будет иметь нулевую массу? Поверхностный анализ позволяет предположить, что если масса объекта была бы равна нулю, то этот объект всегда имел бы нулевую энергию и нулевой импульс и в этом случае не оказывал бы ни на что никакого влияния и вообще мог бы не существовать. Однако одна математическая тонкость говорит о том, что это не так. Эта тонкость – в значении γ. Как вы помните, γ = 1 ÷ √(1 − v²/c²). Когда объект движется со скоростью, стремящейся к с, значение γ стремится к бесконечности, поскольку мы должны разделить единицу на ноль (квадратный корень из нуля равен нулю). Таким образом, мы имеем необычную ситуацию в весьма специфическом случае, когда масса равна нулю, а скорость – c. В математических формулах, описывающих как импульс, так и энергию, мы получаем бесконечность, умноженную на ноль, – значение, не определенное математически. Другими словами, в таком виде эти уравнения бесполезны, но, что очень важно, у нас нет права делать вывод о том, что в случае частиц без массы их энергия и импульс обязательно должны быть нулевыми. С другой стороны, мы можем поставить вопрос так: что происходит с отношением энергии к импульсу? Разделив E = γmc² на p = γmv, мы получим отношение E/p = c²/v, которое в частном случае v = c дает нам вполне осмысленное уравнение E = cp. Следовательно, вывод таков: энергия и импульс могут существенно отличаться от нуля даже для объекта с нулевой массой, но только при условии, что этот объект перемещается со скоростью с. Таким образом, теория Эйнштейна допускает существование частиц без массы. Здесь нам и пригодятся результаты экспериментов, которые говорят о том, что свет состоит из частиц – фотонов и что по имеющимся данным масса этих частиц равна нулю. Следовательно, эти частицы должны двигаться со скоростью с. Здесь есть один важный момент: что делать, если когда-либо в будущем будет проведен эксперимент, который докажет, что на самом деле фотоны имеют крохотную массу? Хотелось бы надеяться, что вы сами сможете ответить на этот вопрос. А ответ таков: нам ничего не нужно будет делать, разве что вернуться к третьему постулату Эйнштейна, сформулированному в главе 3, и заменить его формулировкой «скорость безмассовых частиц – универсальная постоянная». Безусловно, новые экспериментальные данные не изменят значение c – изменится лишь то, что нам больше не придется отождествлять его со скоростью света.