Представьте себе корзину заряженных мышеловок, в пружинах которых заключена энергия. Мы знаем, что сжатая пружина содержит энергию, так как приведение мышеловки в действие сопровождается громким хлопком (это энергия, высвобожденная в виде звука), а сама мышеловка может подскочить (при этом высвобождается кинетическая энергия). А теперь представьте, что в нашей корзине одна мышеловка срабатывает и приводит в действие все остальные. Когда мышеловки захлопываются, энергия пружин высвобождается, что создает настоящий грохот. Закон сохранения энергии гласит, что количество энергии до срабатывания мышеловок должно быть эквивалентно количеству высвободившейся энергии. Более того, так как мышеловки находились сначала в состоянии покоя, общее количество их энергии должно быть равным mc
², где m – общая масса корзины заряженных мышеловок. После срабатывания мы имеем захлопнувшиеся мышеловки и высвободившуюся энергию. Количество энергии до срабатывания мышеловок должно равняться количеству энергии после их срабатывания, а следовательно, корзина заряженных мышеловок должна быть тяжелее корзины захлопнувшихся. Рассмотрим еще один пример, на этот раз связанный с увеличением массы под воздействием кинетической энергии. Масса наполненной газом емкости больше, чем идентичной емкости, содержащей такой же газ, но при более низкой температуре. От температуры зависит скорость движения молекул в емкости: чем выше температура газа, тем быстрее движутся молекулы. Поскольку молекулы перемещаются быстрее, они обладают большей кинетической энергией (другими словами, результат сложения значений ½mv² для каждой молекулы выше при более высокой температуре газа), а значит, в этом случае масса емкости больше. Эта логика распространяется на все, что имеет запас энергии. Масса новой батарейки больше массы отработанной; масса термоса с горячим кофе больше массы термоса с холодным; только что испеченный пирог с мясом и картофелем более массивен по сравнению с остывшим.Таким образом, превращение массы в энергию – не такой уж необычный процесс. Он происходит постоянно. Когда вы отдыхаете у потрескивающего камина, впитывая тепло от горящих углей, это тепло отнимает энергию у угля. Утром, когда камин уже погаснет, вы можете тщательно собрать пепел и взвесить его на невероятно точных весах. Даже если бы вам удалось чудесным образом собрать весь пепел до последнего атома[31]
, вы обнаружили бы, что вес пепла меньше веса исходного угля. Согласно формуле E = mc², разность между весом угля и пепла равна частному от деления количества высвободившейся энергии на квадрат скорости света: m = E/c². Мы легко можем подсчитать, насколько крохотным было бы изменение массы угля в камине, согревающем ваш дом, когда надвигается ночь. Если такой камин генерирует тысячу ватт энергии в течение восьми часов, то общее количество выделенной энергии составляет 1000 × (8 × 60 × 60) джоулей (чтобы получить результат в джоулях, мы должны выполнять расчеты в секундах, а не в часах), что немногим менее 30 миллионов джоулей. Следовательно, соответствующая потеря массы должна быть равной частному от деления 30 миллионов джоулей на квадрат скорости света, а это меньше одной миллионной грамма. Такое крохотное сокращение массы – прямое следствие закона сохранения энергии. До зажигания камина общее количество энергии угля равно произведению общей массы угля и квадрата скорости света. Когда огонь загорается, энергия уходит из камина. Через какое-то время огонь в камине затухает и остается только пепел. Согласно закону сохранения энергии общее количество энергии пепла должно быть меньше общего количества энергии угля на величину, равную энергии, которая ушла на нагревание комнаты. Энергия пепла равна произведению его массы на квадрат скорости света. При этом пепел должен быть легче исходного угля на величину, которую мы рассчитали выше.