Какая масса нам понадобилась бы для выполнения той же работы, будь у нас возможность применить теорию Эйнштейна и превратить эту массу в энергию? Эта масса должна быть эквивалентна энергии, разделенной на скорость света в квадрате, то есть 100 джоулей разделить на возведенные в квадрат 300 миллионов метров в секунду, что составляет около 0,000000000001 грамма, или, если словами, одна миллионная одной миллионной (то есть одна триллионная) доли одного грамма. Таким образом, нам достаточно было бы разрушать всего один микрограмм вещества каждую секунду, чтобы обеспечить электроэнергией целый город. В одном столетии 3 миллиарда секунд, значит, нам понадобилось бы три килограмма вещества для того, чтобы питать город электроэнергией на протяжении сотни лет. Одно можно сказать совершенно точно: масштаб энергетического потенциала, который заключен в материи, отличается от всего того, к чему мы привыкли, и способность высвобождать эту энергию позволила бы нам решить все энергетические проблемы планеты.
Позвольте, прежде чем двигаться дальше, высказать еще одно, последнее соображение. Заключенная в массе энергия кажется просто астрономической, если использовать ее здесь, на Земле. Существует большой соблазн объяснить это тем, что скорость света – очень большое число, но это означало бы упустить из виду самое главное. Дело, скорее, в том, что значение
Людям понадобилось почти полстолетия после открытий Эйнштейна, прежде чем они нашли способ извлекать из вещества значительное количество энергии массы; такое разрушение массы используется сейчас в атомных электростанциях. В разительном контрасте с этим природа применяет закон
6. И какое нам до этого дело? Об атомах, мышеловках и энергии звезд
Знаменитое уравнение Эйнштейна заставило нас переосмыслить свои представления о массе. Мы поняли, что масса – это не только показатель количества вещества, содержащегося в чем-то, но и мера потенциальной энергии, которую содержит это вещество. Кроме того, мы пришли к выводу, что, если бы умели высвобождать эту энергию, нам удалось бы получить в свое распоряжение огромный источник энергии. В этой главе мы уделим немного времени изучению способов, посредством которых действительно можно высвободить энергию массы. Но прежде давайте более внимательно проанализируем наше новое уравнение –
Вспомните, что версия уравнения