Фейнман сделал нечто большее, чем просто ввел диаграммы. Он сопоставил с каждой вершиной математические правила, выведенные непосредственно из основного уравнения. Эти правила позволяют физикам строить сложные диаграммы и рассчитывать вероятность процесса, отображенного соответствующей диаграммой. Например, когда два электрона встречаются друг с другом, самая простая диаграмма, которая позволяет это отобразить, выглядит так, как показано на рис. 16, a
. Мы говорим, что происходит рассеяние электронов посредством обмена фотонами. Эта диаграмма построена с помощью склейки двух вершин «электрон-фотон». Вы можете представить себе, как два электрона сближаются, двигаясь слева, разлетаются друг от друга в результате фотонного обмена и продолжают свой путь направо. На самом деле мы незаметно применили здесь еще одно правило: нам разрешается менять частицу на античастицу (и наоборот) при условии, что затем мы превратим ее в исходную частицу. На рис. 16, б показан еще один возможный способ сшивания вершин. Этот рисунок немного сложнее, но он также описывает вероятный способ взаимодействия между двумя электронами. После некоторых размышлений вы согласитесь, что существует бесконечное множество диаграмм и все они отображают возможные способы рассеяния электронов. К счастью для тех из нас, кому приходится выполнять расчеты, одни диаграммы более важны, чем другие. На самом деле сформулировать правило достаточно легко: в общем случае самые значимые – диаграммы с наименьшим количеством вершин. Следовательно, в случае пары электронов диаграмма на рис. 16, a наиболее важна, поскольку содержит всего две вершины. Это значит, что мы можем получить достаточно полное представление о происходящем, рассчитав только эту диаграмму с использованием правил Фейнмана. Замечательно то, что посредством математики можно получить описание физики взаимодействия двух электрических заряженных частиц друг с другом в том виде, в котором это взаимодействие открыли Фарадей и Максвелл. Но теперь мы можем заявить, что гораздо лучше понимаем происхождение этого физического процесса, так как установили его исходя из калибровочной симметрии. Кроме того, математические расчеты на основании правил Фейнмана дают нам нечто большее, чем просто еще один подход к пониманию физики XIX столетия. Даже в случае взаимодействия двух электронов мы можем вычислить небольшие поправки к предсказаниям Максвелла, которые позволят усовершенствовать его уравнения для их более точного соответствия экспериментальным данным. Следовательно, основное уравнение открывает новые горизонты. На самом деле мы только начинаем осваивать эту тему. Как мы уже говорили, стандартная модель описывает все, что нам известно о взаимодействии частиц друг с другом, и представляет собой исчерпывающую теорию сильного, слабого и электромагнитного взаимодействия, которой удалось даже объединить два из них. В эту амбициозную систему понимания того, как все взаимодействует во Вселенной, не включена только гравитация.
Рис. 16