В настоящее время механизм Хиггса представляет собой общепризнанную теорию происхождения массы во Вселенной. Если все пойдет по плану, БАК либо подтвердит, либо опровергнет принятое в стандартной модели описание происхождения массы. Именно это делает несколько следующих лет волнующим периодом для физиков. Мы находимся в классической научной ситуации, когда есть теория, прогнозирующая, что именно должно произойти в ходе эксперимента, а значит, по его результатам она либо уцелеет, либо погибнет. Но что, если стандартная модель ошибочна? Не может ли случиться нечто совершенно иное и непредвиденное? Ведь не исключено, что она не совсем точна и нет никакой частицы Хиггса. Безусловно, такой сценарий возможен. Специалисты по физике элементарных частиц особенно взволнованны, поскольку знают, что БАК
8. Искривление пространства-времени
До настоящего момента мы воспринимали пространственно-временн
Безусловно, идея искривленного пространства не должна казаться нам новой. Эвклидово пространство плоское, а пространство Минковского искривлено. Мы имеем в виду, что теорема Пифагора неприменима в пространстве-времени Минковского – применима версия уравнения расстояния со знаком минус. Кроме того, мы знаем, что расстояние между двумя точками в пространстве-времени аналогично расстоянию между различными местами на карте Земли – самое короткое расстояние между двумя точками – не прямая линия в общепринятом смысле слова. Таким образом, пространство-время Минковского и поверхность Земли – примеры искривленного пространства. Вместе с тем расстояние между двумя точками в пространстве-времени Минковского всегда удовлетворяет уравнению
Гладкий мяч искривлен одинаково повсюду – это совершенно очевидно. Однако этого нельзя сказать о мяче для гольфа, имеющем углубления. Поверхность Земли также не идеальная сфера. При ближайшем рассмотрении мы видим на ней долины и впадины, горы и океаны. Закон для определения расстояния между двумя точками на поверхности Земли один и тот же повсюду только в приближенном варианте. Для получения более точного ответа нам необходимо знать, как изменяется холмистая поверхность Земли, когда мы перемещаемся по горам и долинам между начальным и конечным пунктом путешествия. Могут ли в пространстве-времени быть такие углубления, как на мяче для гольфа, или горы и долины, как на поверхности Земли? Может ли пространство-время «искривляться» в разных местах?