Читаем Поиски истины полностью

Существует, кроме того, зеркальная симметрия - волчок, закрученный вправо, ведет себя так же, как закрученный влево, - единственная разница в том, что фигуры движения правого волчка будут зеркальным отражением фигур левого. Существуют зеркально асимметричные молекулы, как правая и левая руки, но если они образуются в одинаковых условиях, число левых молекул равно числу правых.

Зеркальная симметрия явлений природы - неточная, как и большинство других симметрии. В слабых взаимодействиях, ответственных за радиоактивный распад, зеркальная симметрия нарушается. Даже в явлениях, не связанных с радиоактивными превращениями, влияние слабых взаимодействий приводит к небольшому нарушению зеркальной симметрии. Так, в атомах относительная неточность зеркальной симметрии - порядка 10-15.

Однако влияние этого ничтожного нарушения на переходы между очень близкими уровнями не так мало (порядка 10-3-10-8). В 1964 году группа физиков Московского института теоретической и экспериментальной физики обнаружила небольшое нарушение четности ядерных сил, вызванное слабыми взаимодействиями (Ю. Абов, П. Крупчицкий, Ю. Оратовский). В 1966 году нарушение четности было обнаружено другим методом в Ленинградском институте ядерной физики имени Б. П. Константинова (В. Лобашов, В. Назаренко, Л. Саенко, Л. Смотрицкий, Г. Харкевич). В 1978 году Л. Баркову и М. Золотареву из Института ядерной физики новосибирского академгородка удалось обнаружить это явление в атоме. Кроме того, слабые взаимодействия приводят также к небольшому нарушению временной обратимости.

Важнейшая симметрия, пронизывающая всю современную физику, была обнаружена в начале XX века. Еще Галилей нашел замечательное свойство механических движений: они не зависят от того, в какой системе координат их изучать - в равномерно движущейся или в неподвижной.

Замечательный голландский физик Хендрик Антон Лоренц в 1904 году убедился, что таким свойством обладают и электродинамические явления, причем не только для медленно движущихся тел, но и для тел, движущихся со скоростью, близкой к скорости света. При этом выяснилось, что скорость заряженных тел не может превысить скорости света.

Анри Пуанкаре в работе, оказавшей огромное влияние на теоретическую физику, показал, что результаты Лоренца означают инвариантность уравнений электродинамики относительно поворотов в пространстве-времени, то есть в пространстве, в котором, кроме трех обычных координат, есть еще одна - временная.

Но самый важный шаг сделал Эйнштейн, обнаружив, что симметрия пространства-времени - всеобщая, что не только электродинамика, но все явления природы - физические, химические, биологические - не изменяются при поворотах. Ему удалось это сделать после глубокого и не сразу понятого современниками пересмотра наших привычных представлений о пространстве и времени.

Слово «поворот» надо было бы заключить в кавычки - это не обычный поворот, при котором сохраняют

ся расстояния между точками; например, расстояние от какой-либо точки до начала координат.

В четырехмерном пространстве, о котором мы только что говорили, по четвертой оси откладывается время t, помноженное на скорость света с, и «поворот» соответствует неизменности не расстояния до начала координат, а величины l2 = x2+y2+z2-c2t2 = хl2+yl2+ + zl2-c2ti2, где x, у, z; хl yl,zl - координаты до и после поворота. Такой «поворот» обеспечивает постоянство скорости распространения света в разных системах координат.

Таким образом, все симметрии, которые мы до сих пор рассматривали, объединяются в одну, всеобщую -¦ все явления природы инвариантны относительно сдвигов, поворотов и отражений в четырехмерном пространстве-времени. Инвариантность относительно сдвигов и поворотов в обычном пространстве получается как частный случай, когда сдвиг не изменяет отсчета времени или когда вращение происходит вокруг временной оси.

Нужно пояснить, что означает инвариантность явлений природы относительно поворотов. Все физические величины можно классифицировать по тому, как они изменяются при повороте. Есть величины, которые не изменяются вовсе, - они называются «скалярами». Другие - векторы - ведут себя как отрезок, проведенный из начала координат в какую-либо точку пространства. При повороте системы координат длина вектора не изменяется, а его проекции на оси координат изменяются по известному закону. Есть величины, изменяющиеся более сложно, например как произведение двух векторов. Они называются «тензорными».

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже