Читаем Поиски истины полностью

Спонтанное нарушение симметрии весьма распространенное явление в макроскопической физике. Однако в физику высоких энергий оно пришло с большим запозданием. Не все физики, занимавшиеся теорией элементарных частиц, сразу приняли возможность асимметричных решений в симметричных системах. Что поделаешь - узкая специализация имеет свои теневые стороны!

Как сказывается это явление в физике элементарных частиц? Плодотворная тенденция теории элементарных частиц состоит в предположении, что на сверхмалых расстояниях царствует максимальная симметрия, но при переходе к большим расстояниям возникает спонтанное нарушение, которое может сильно замаскировать симметрию. Так, в теории электрослабого взаимодействия, объединяющего электродинамику и слабые взаимодействия, при сверхмалых расстояниях (порядка 10-16 сантиметра) существуют четыре равноценных безмассовых поля, которые при больших масштабах в силу спонтанного нарушения превращаются в три массивных W-бозона с массами порядка 100 ГэВ и один безмассовый фотон. Возникновение в системе безмассовых глюонов и кварков, массивных адронов, есть другой пример спонтанного нарушения симметрии. Эти примеры показывают, какие принципиальные свойства элементарных частиц определяются явлением спонтанного нарушения.

Спонтанное нарушение симметрии связано еще с одним очень важным явлением. Когда нарушается симметрия, то все-таки остаются следы от бывшей ранее более высокой симметрии. Это так называемые «возбуждения Гольдстоуна», по имени обнаружившего их английского физика. Когда атомы собираются в кусок твердого тела, возникает нарушение трансляционной симметрии. Но при этом остается свобода перемещения в пространстве центра тяжести всего куска в целом. Когда происходит упругое колебание с большой длиной волны, каждый маленький участок перемещается словно целое. Поэтому мы вправе ожидать, что при увеличении длины волны частота упругого колебания должна стремиться к нулю. Это действительно выполняется, частота длинноволнового колебания - частота звука, обратно" пропорциональная длине волны. Звук в твердом и жидком теле и есть простейший пример «гольдстоу-новского колебания». Вращательные состояния больших деформированных ядер тоже «гольдстоуновские колебания», на этот раз возникающие в результате нарушения вращательной симметрии, именно поэтому вращательные возбуждения ядер имеют малую частоту.

Спонтанное нарушение симметрии - хороший пример того, как разные области физики, даже далекие друг от Друга, оказывают взаимное влияние. В данном случае это влияние физики твердого тела на теорию элементарных частиц. Но можно привести не меньше и обратных примеров - современные теоретические методы исследования фазовых переходов, а также других явлений макроскопической физики пришли в нее из физики высоких энергий.

Объять необъятное

Другое направление, по которому развивалась физика, - поиски единых причин для явлений разного круга, попытки объединения различных областей физической науки.

Важный шаг на этом пути был сделан Ньютоном. Он доказал, что падение тел на Земле, движение Луны вокруг Земли и движение звезд определяются одной причиной - притяжением с силой, обратно пропорциональной квадрату расстояния. Он показал, что все эти явления можно количественно рассчитать с помощью сформулированных им законов механики.

Следующий, не менее грандиозный шаг сделал Джеймс Максвелл. Он получил удивительные уравнения, объединившие все явления электричества, магнетизма и оптики. Замечательный немецкий физик, один из создателей статистической физики - Людвиг Больц-ман сказал об уравнениях Максвелла: «Не бог ли начертал эти письмена?»

В начале XX века физики знали только два типа взаимодействий - электромагнитное и гравитационное. Уже первые исследования атомных ядер показали, что нейтроны и протоны, входящие в состав ядра, удерживаются силами, в десятки раз большими электромагнитных. Эти частицы связаны сильными взаимодействиями. Кроме того, были обнаружены гораздо более слабые силы между электронами, нейтрино и нуклонами (нейтронами и протонами). Эти взаимодействия ответственны за радиоактивный распад и названы «слабыми». Они вызывают, в частности, превращение свободного нейтрона в протон, электрон и антинейтрино.

До недавнего времени казалось, что между четырьмя взаимодействиями - сильным, слабым, гравитационным и электромагнитным - не существует никакой связи. В последние десятилетия усилия физиков были направлены на их объединение. Электромагнитное и слабое взаимодействия объединяются в «электрослабое». Они, как мы уже упоминали, оказались проявлениями более общего единого взаимодействия. В чем красота такого объединения?

Возникли неожиданные связи между разнородными явлениями. Так, постоянная, определявшая величину слабого взаимодействия, оказалась связанной с зарядом электрона. Теория объяснила многие явления, казавшиеся ранее загадочными.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже