Перейдем к рассмотрению случая, когда в системе присутствует ограничение на неравенство. Не вдаваясь в математические подробности, укажем два важных отличия данного случая от рассмотренного в предыдущем подразделе. Во-первых, ограничения на неравенство позволяют системе быть эффективной даже в некоторых случаях, когда низкопродуктивный актор больше инвестирует в перераспределение и получает большую долю общественного ресурса. Это происходит, если производство высокопродуктивного актора оказывается способным компенсировать потери низкопродуктивного. Пусть, например,
Во-вторых, увеличивается количество случаев, когда система оказывается неэффективной, при том что высокопродуктивный актор получает большую долю ресурса. Это происходит, если низкопродуктивный актор потеряет при производстве настолько много, что высокопродуктивный не сможет восполнить убыток (напомним: если ограничений на неравенство нет, то низкопродуктивный актор, проигравший борьбу за перераспределение, не может нанести ущерб системе, так как не получает ресурса вообще).
Таким образом, вводя ограничения на неравенство, мы увеличиваем робастность в одном месте, но уменьшаем в другом (рис. 3). Вопрос заключается в том, в какую сторону (большую или меньшую) изменяется робастность системы в целом. Для того чтобы прояснить данный вопрос, рассмотрим отдельно высокопродуктивные и низкопродуктивные системы.
Рис. 3.
При введении ограничений на неравенство (правый рисунок) робастность уменьшается выше диагональной линии, но может появиться также ниже этой линии
Выше мы пользовались такими понятиями, как
Далее будем называть систему низкопродуктивной, если (
Рассмотрим низкопродуктивную систему. Предположим, что в ней действует абсолютно эгалитарное правило: общественный ресурс делится между акторами поровну (независимо от инвестиций в борьбу за перераспределение). Очевидно, такая система не может быть эффективной, так как низкопродуктивный актор потеряет при производстве больше, чем приумножит второй.
Вычислительные эксперименты с построенной математической моделью показывают, что даже если распределение не является абсолютно эгалитарным, но все же достаточно жестко ограничивает неравенство, то низкопродуктивная система также не может быть эффективной. Например, для эксперимента, представленного на рис. 4, эффективных политик не существует при
Рис. 4.
Зависимость робастности от уровня максимально допустимого неравенства для низкопродуктивной системы (вычислительный эксперимент проведен для
Перейдем к рассмотрению систем, для которых (
Вычислительные эксперименты с моделью показывают, что общие закономерности в данном случае имеют следующий вид:
– минимальная робастность имеет место при некотором срединном ограничении между 0 и 0,5, а максимальная робастность – либо при абсолютно эгалитарном ограничении
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Изобразительное искусство, фотография / Документальное / Биографии и Мемуары / Прочее