Thank you for the info about your decision on my paper. I will not appeal the decision. However, let me note that when I send a paper to a journal, I am interested not only whether the paper will be accepted or not but also in knowing the opinion of qualified referees.
In fact, you were my referee and my understanding is that, although the formal status was “With Editor” for more than a month, nobody looked at the paper till Dec 10th, when it took you less than 40 minutes to come to the conclusion. From the formal point of view the reason of rejection was “The statement about
I understand that the statement is simple, have no doubt that for you the statement is indeed obvious and several mathematicians said the same. However, in my understanding, in mathematics the statement that something is obvious needs to be explained. Could you, please give me a direct reference where this statement is proved and how the limit is understood. You and several mathematicians told me that this is obvious from ultraproducts, «pseudofinite» structures etc. and I agree. However, those notions are rather sophisticated. My paper is titled “A new look at potential vs. actual infinity”. Those notions are discussed in the framework of actual infinity. The mentality of many mathematicians is that problems with characteristic 0 are fundamental while finite rings or fields can be used as something auxiliary for tackling those problems. My observation is that the majority of mathematicians do not care that standard mathematics has foundational problems (as follows e.g. from Gödel's incompleteness theorems and from other considerations). My hope was that NDJFL does care about this.
My math professor was a famous mathematician M.A. Naimark, and I was very impressed by his lectures on calculus and group representations. As I note in the abstract, the technique of standard math involves only potential infinity while the basis does involve actual infinity: the theory starts with
I came to my ideas from physics where I proved that quantum theory based on finite math is more fundamental than quantum theory based on standard math: the latter is a special degenerated case of the former in the formal limit
So I believe that the fact that