The decision to reject my paper was based on the advice of Reviewer 1, and there were no other referee reports. The motivation of Reviewer is as follows.
Reviewer says that “everybody understands that infinite precision is not possible” and that “So we use the real numbers not because we think that they map directly on to reality, but because it turns out to be convenient to do exact calculations within the real number system, obtain exact answers, and then use those exact answers to make predictions that can be verified, not exactly of course, but often to a high degree of precision.”
At this point, my approach is completely the same as the approach of Reviewer. However, Reviewer concludes the report with the sentence: “An argument against the real numbers has to offer some advantage of using a different system.”, and only this sentence is the reason for the advice to recommend rejection.
This sentence shows that Reviewer even did not carefully read the paper. From the very beginning of the paper, I explain that mathematics with infinitesimals cannot be universal. For example, as I note, many physicisists “… say that, for example, dx/dt should be understood as Δx/Δt where Δx and Δt are small but not infinitesimal. I ask them: but you work with dx/dt, not Δx/Δt. They reply that since mathematics with derivatives works well then there is no need to philosophize and develop something else.” Thus, the mentality of these physicists on the application of real numbers is the same as the mentality of Reviewer.
I fully agree that mathematics with infinitesimals is very powerful in many applications. However, I note that “The development of quantum theory has shown that the theory contains anomalies and divergences.”
The idea of the paper is to explain on popular level the results of my monograph “Finite mathematics as the foundation of classical mathematics and quantum theory…” recently published by Springer. Even the title of the monograph shows that “advantage of using a different system” is discussed in detail, and in the manuscript, I explain on popular level why finite mathematics is more general (fundamental) than classical one. I note that my results are fully in the spirit of the history of science. For example, nonrelativistic theory works in many cases with a very high accuracy, but it cannot explain phenomena where it is important that the speed of light c is finite and not infinitely large. I note that, analogously, in nature there are phenomena (e.g., gravity) which can be explained only in the framework of finite mathematics where it is important that the characteristics p of the ring is finite and not infinitely large.
The Reviewer's remarks show that he/she is completely unfamiliar with the fact that the problem of infinities is one of the main problems of quantum theory and many famous scientists wrote that fundamental quantum theory should be based on finite mathematics.
In summary, the Reviewer’s advice to recommend rejection is completely unfounded. My paper satisfies all the requirements specified in the editorial policy of “The Mathematical Intelligencer”. I would be grateful if the Editorial decision is reconsidered.