Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Параметризация матрицы U из уравнения (18.1) кардинально зависит от того какую модель для прямой суммы мы выберем. Если импульсы масс mi одинаковые, то их скорости разные. Обычно матрицу U параметризуют, исходя из предположения, что импульсы компонент одинаковые. Тогда, при общепринятом выборе величин разности квадратов масс компонент, через год расстояния между компонентами будут порядка одного метра [30]. А например, для нейтрино приходящих от Сириуса (расстояние до которого «всего» 8.6 световых лет), расстояния между компонентами будут порядка 8,6m. Но для основной части нейтрино от звезд, расстояния между компонентами будут порядка километры или больше.

Возникает проблема, может ли взаимодействие таких нейтрино с детектором на Земле все еще быть описано в терминах (νeμτ). Как утверждается в [29], осцилляции не будут происходить при таких условиях. С другой стороны, в модели где скорости масс mi одинаковы, расстояния между их волновыми пакетами не будут меняться со временем. А если импульсы масс имеют разные направления, то вообще непонятно, какие теоретические предсказания можно сделать. Эта проблема представляет большой теоретический интерес, однако ее экспериментальное исследование проблематично. Большинство нейтрино детектируемых нейтринными обсерваториями, являются либо солнечными нейтрино либо нейтрино образовавшимися когда высокоэнергетичные частицы из космоса сталкиваются с частицами земной атмосферы. Поэтому очень трудно обнаружить нейтрино которое пришло к Земле от далекой звезды.

Так как нет никаких теоретических аргументов в пользу той или иной модели прямой суммы, то непонятно следующее: допустим, что мы выбрали какую-то модель и нам удалось найти параметры матрицы U, которые с хорошей точностью описывают эксперимент. Даже это, даст ли какой-то намек на то какая теория суперпозиции описывает реальную физику? Но, несмотря на большое количество попыток параметризации матрицы U, непонятно, есть ли теоретические аргументы в пользу того или иного выбора параметризации. Например, в статье [31] обсуждается, что, если предположить, что импульсы компонент одинаковые, то какие параметры матрицы U известны с хорошей точностью, какие известны с большой неопределенностью и какие совсем неизвестны.

Итак, хотя явление нейтринных осцилляций подтверждено в большом количестве экспериментов, но нет никакой надежной теории описывающей физику этого явления.

Поэтому я думаю, что физика нейтринных осцилляций должна описываться в подходах, которые кардинально отличаются от того что есть сейчас, и в физической литературе должны приветствоваться разные подходы к этой проблеме.

В статье [30] я предложил подход в котором нейтрино остается элементарной частицей, а осцилляции возникают из-за того, что в AdS квантовой теории, кинематика свободного нейтрино отличается от кинематики свободного нейтрино в Пуанкаре инвариантной теории. В этом подходе пока еще остаются проблемы которые требуют решения. Послал статью в журнал Universe. Было три рецензента, и, после моих ответов на рецензии, два из них рекомендовали публикацию, Рецензент #3 остался против, и журнал отверг статью. Этот рецензент не комментировал мои аргументы, что описание разных видов нейтрино при помощи прямых сумм не основано на каких-либо серьезных теоретических; он/она по-прежнему рассуждает в терминах "mass and flavor eigenstates, Cabibbo-like mixing angles, PMNS matrix elements, MSW theory etc. " Это еще куда ни шло. Но, наверное, самый «мощный» его аргумент такой, что статья является “the drastic deviation from the standard principles of quantum field theory and special relativity” и что она отвергает

E2-p2=m2 (18.2)

В своем ответе на первую рецензию, я популярно объяснил следующее. Теория относительности не отвергает E=p2/(2m), но говорит, что это соотношение является приближенным, и оно работает с хорошей точностью когда vc. Аналогично, AdS не отвергает (18.2), но говорит, что это соотношение работает с хорошей точностью только в каком-то приближении. Но Рецензент #3 полностью проигнорировал мое объяснение и опять написал, что отклонение от (18.2) недопустимо. То есть, он/она не говорит, что мое объяснение неверно, а просто его игнорирует. Допустим это еще можно было как-то понять, если бы он/она были в принципе против де Ситтера. Но он/она даже рекомендует мне какие-то статьи по AdS/CFT. То есть, он/она совершенно не понимает, что для де Ситтеровской симметрии соотношение (18.2) может быть только приближенным. Я сразу написал редакции короткое письмо в котором написал, что Рецензент #3 не понимает самых основ де Ситтеровской симметрии и попросил чтобы редакция спросила у ЛЮБОГО эксперта по де Ситтер симметрии является ли соотношение (18.2) точным или приближенным. А потом послал им такой appeal:

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии