Читаем Порядок из хаоса полностью

Ныне мы располагаем новыми сведениями о знаменитом реликтовом излучении — «свете», испущенном при взрыве сверхплотного файербола, с которого началась наша Вселенная. По иронии истории, Эйнштейн (в известной мере против собственной воли) стал Дарвином физики. Дарвин учил, что человек составляет неотъемлемую часть биологической эволюции; и Эйнштейн учил, что человек неразрывными узами связан с эволюцией Вселенной. Идеи Эйнштейна привели его к открытию «нового континента», и это открытие было для него столь же неожиданным, как открытие Америки для Колумба. Подобно многим физикам своего поколения, Эйнштейн исходил в своей деятельности из глубокого убеждения в существовании в природе фундаментального простого уровня. Однако ныне этот уровень становится все менее доступным эксперименту. Единственные объекты, поведение которых действительно «просто», существуют в нашем мире на макроскопическом уровне. Классическая наука тщательно выбирала объекты изучения именно на этом промежуточном уровне. Первые объекты, выделенные Ньютоном, действительно были простыми; свободно падающие тела, маятник, движение планет. Однако, как мы знаем теперь, эта простота отнюдь не является отличительной особенностью фундаментального: она не может быть приписана остальному миру.

Достаточно ли этого? Мы знаем ныне, что устойчивость и простота являются скорее исключением, чем правилом. Следует ли просто отбросить претендующие на всеобщность тоталитарные притязания концептуализации, применимые в действительности лишь к простым и устойчивым объектам? Нужно ли проявлять столь большую заботу о том, чтобы согласовать динамику и термодинамику?

Не следует забывать слова Уайтхеда, справедливость которых непрестанно подтверждается историей науки: столкновение теорий не бедствие, а благо ибо открывает новые перспективы. Различные авторы довольно часто высказывали мысль о том, что мы из практических соображений игнорируем те или иные проблемы: поскольку те основаны на трудно реализуемых идеализациях. В начале XX в. некоторые физики предлагали отказаться от детерминизма на том основании, что он недостижим в реальном опыте[185]. Действительно, мы уже говорили о том, что точные положения и скорости молекул в большой системе никогда нельзя считать известными. Поэтому точно предсказать будущую эволюцию системы невозможно. Впоследствии Бриллюэн попытался подорвать детерминизм, апеллируя к истине на уровне здравого смысла. Точное предсказание, рассуждал он, требует точного знания начальных условий, а за это знание нужно платить. За точное предсказание, необходимое для того, чтобы детерминизм «работал», необходимо платить бесконечно большую цену.

Подобные возражения при всей их разумности не оказывают особого влияния на концептуальный мир динамики. Не проливают они новый свет и на реальность. Кроме того, усовершенствования в области технологии могут все больше приближать нас к идеализации, требуемой классической динамикой.

В отличие от таких возражений доказательства «невозможности» имеют фундаментальные значения. Каждое из них открывает какую-то неожиданную внутреннюю структуру реальности, обрекающую на провал чисто умозрительные построения. Такие открытия исключают возможность проведения операции, ранее считавшейся (по крайней мере в принципе) возможной. «Ни один двигатель не может иметь коэффициент полезного действия, который бы превышал единицу», «ни один тепловой двигатель не может производить полезную работу, если он не находится в контакте с двумя источниками (нагревателем и холодильником)», — примеры двух утверждений о невозможности, которые привели к глубокой перестройке системы понятий.

В основе термодинамики, теории относительности и квантовой механики лежат открытия невозможности, установление пределов амбициозных притязаний классической физики. Эти открытия ознаменовали в свое время конец целых направлений в естествознании, достигших своих пределов. Ныне они предстают перед нами в ином свете — не как конец, а как начало, как новая, открывающаяся перспектива. В гл. 9 мы увидим, что второе начало термодинамики выражает «невозможность» даже на микроскопическом уровне, но и здесь эта недавно открытая невозможность становится исходным пунктом для возникновения новых понятий.

2. Конец универсальности


Научное описание должно соответствовать источникам, доступным наблюдателю, принадлежащему тому миру, который он описывает, а не существу, созерцающему наш мир «извне». Таково одно из фундаментальных требований теории относительности. Она устанавливает предел скорости распространения сигнала, который не может быть превзойден ни одним наблюдателем. Скорость света с в вакууме (с=300 000 км/с) — предельная скорость распространения всех сигналов. Эта предельная скорость играет весьма важную роль: она ограничивает ту область пространства, которая может влиять на точку нахождения наблюдателя.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука