Ныне мы располагаем новыми сведениями о знаменитом реликтовом излучении — «свете», испущенном при взрыве сверхплотного файербола, с которого началась наша Вселенная. По иронии истории, Эйнштейн (в известной мере против собственной воли) стал Дарвином физики. Дарвин учил, что человек составляет неотъемлемую часть биологической эволюции; и Эйнштейн учил, что человек неразрывными узами связан с эволюцией Вселенной. Идеи Эйнштейна привели его к открытию «нового континента», и это открытие было для него столь же неожиданным, как открытие Америки для Колумба. Подобно многим физикам своего поколения, Эйнштейн исходил в своей деятельности из глубокого убеждения в существовании в природе фундаментального простого уровня. Однако ныне этот уровень становится все менее доступным эксперименту. Единственные объекты, поведение которых действительно «просто», существуют в нашем мире на макроскопическом уровне. Классическая наука тщательно выбирала объекты изучения именно на этом промежуточном уровне. Первые объекты, выделенные Ньютоном, действительно были простыми; свободно падающие тела, маятник, движение планет. Однако, как мы знаем теперь, эта простота отнюдь не является отличительной особенностью фундаментального: она не может быть приписана остальному миру.
Достаточно ли этого? Мы знаем ныне, что устойчивость и простота являются скорее исключением, чем правилом. Следует ли просто отбросить претендующие на всеобщность тоталитарные притязания концептуализации, применимые в действительности лишь к простым и устойчивым объектам? Нужно ли проявлять столь большую заботу о том, чтобы согласовать динамику и термодинамику?
Не следует забывать слова Уайтхеда, справедливость которых непрестанно подтверждается историей науки: столкновение теорий не бедствие, а благо ибо открывает новые перспективы. Различные авторы довольно часто высказывали мысль о том, что мы из
Подобные возражения при всей их разумности не оказывают особого влияния на концептуальный мир динамики. Не проливают они новый свет и на реальность. Кроме того, усовершенствования в области технологии могут все больше приближать нас к идеализации, требуемой классической динамикой.
В отличие от таких возражений доказательства «невозможности» имеют фундаментальные значения. Каждое из них открывает какую-то
В основе термодинамики, теории относительности и квантовой механики лежат открытия невозможности, установление пределов амбициозных притязаний классической физики. Эти открытия ознаменовали в свое время конец целых направлений в естествознании, достигших своих пределов. Ныне они предстают перед нами в ином свете — не как конец, а как начало, как новая, открывающаяся перспектива. В гл. 9 мы увидим, что второе начало термодинамики выражает «невозможность» даже на микроскопическом уровне, но и здесь эта недавно открытая невозможность становится исходным пунктом для возникновения новых понятий.
2. Конец универсальности
Научное описание должно соответствовать источникам, доступным наблюдателю, принадлежащему тому миру, который он описывает, а не существу, созерцающему наш мир «извне». Таково одно из фундаментальных требований теории относительности. Она устанавливает предел скорости распространения сигнала, который не может быть превзойден ни одним наблюдателем. Скорость света