Читаем Порядок из хаоса полностью

Сама по себе эта идея очень проста, хотя на первый взгляд кажется несколько абстрактной: оператор (математическую операцию, производимую над некоторым объектом) необходимо отличать от объекта, на который он действует, — от функции. Выберем, например, в качестве математического оператора дифференцирование (взятие производной) d/dx. Действуя нашим оператором на какую-нибудь функцию (например, на х2), мы получим новую функцию (в данном случае 2х). Некоторые функции ведут себя при дифференцировании особым образом. Например, производная от e3x равна 3e3x, т. е. отличается от исходной функции только численным множителем (равным в нашем примере 3). Функции, переходящие под действием оператора (с точностью до численного множителя) в себя, называются собственными функциями данного оператора, а численные множители, на которые они умножаются, — собственными значениями оператора.

Каждому оператору соответствует определенный набор собственных значений, который называется спектром. Если собственные значения образуют дискретную последовательность, то спектр дискретный. Например, существует оператор, имеющий собственными значениями все целые неотрицательные числа: 0, 1, 2, ... Спектр может быть и непрерывным, например, состоять из всех чисел, заключенных между 0 и 1.

Основная идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» операторы, а численным значениям, принимаемым данной физической величиной, — собственные значения ее квантовомеханического оператора. Подчеркнем одну важную особенность квантовой механики: различие, проводимое в ней между понятием физической величины (представимой оператором) и принимаемыми этой величиной численными значениями (представимыми собственными значениями оператора). В частности, энергии в квантовой механике соответствует оператор гамильтониан, а энергетическим уровням (наблюдаемым значениям энергии) — собственные значения спектра гамильтониана.

Введение операторов распахнуло перед физиками ворота в неожиданно богатый и разнообразный микроскопический мир, и нам остается лишь сожалеть, что мы не можем уделить больше места такой увлекательной области науки, как квантовая механика, в которой творческое воображение и экспериментальное наблюдение столь успешно сочетаются друг с другом. Подчеркнем лишь, что микроскопический мир подчиняется законам, имеющим качественно новую структуру. Тем самым раз и навсегда кладется конец всем надеждам на создание единой концептуальной схемы, общей для всех уровней описания.

Новый математический язык, изобретаемый для преодоления вполне определенных трудностей, может способствовать открытию новых областей исследования, полных неожиданностей, превосходящих самые смелые ожидания своих создателей. Так было с дифференциальным исчислением, лежащим в основе классической динамики. Так было и с теорией операторов. Квантовая теория, созданная в ответ на насущную потребность объяснения новых, неожиданных экспериментальных открытий, — вскоре превратилась в почти необозримую terra incognita — бескрайний простор для исследований.

Ныне, через более чем пятьдесят лет после введения операторов в квантовую механику, их значение по-прежнему остается предметом горячих дискуссий. Исторически введение операторов связано с существованием энергетических уровней, но теперь операторы применяются даже в классической физике. Их значение намного превзошло ожидания основателей квантовой механики. Операторы ныне вступают в игру всякий раз, когда по той или иной причине приходится отказываться от понятия динамической траектории, а вместе с ним и от детерминистического описания траектории.

4. Соотношения неопределенности Гейзенберга


Мы видели, что в квантовой механике каждой физической величине соответствует оператор, который действует на функции. Особенно важную роль играют собственные функции и собственные значения интересующего нас оператора. Собственные значения соответствуют допустимым численным значениям величины. Рассмотрим теперь более подробно квантовомеханические операторы, связанные с координатами q и импульсами р (как показано в гл. 2, эти величины — канонические переменные).

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука