Читаем Порядок из хаоса полностью

Своим рождением квантовая механика отчасти обязана стремлению физиков преодолеть пропасть, отделявшую бытие от становления. Планка интересовало взаимодействие между веществом и излучением. Он намеревался осуществить для взаимодействия вещества со светом такую же программу, какую Больцман осуществил для взаимодействия вещества с веществом, а именно: построить кинетическую модель необратимых процессов, приводящих к равновесию[187]. К своему удивлению, Планк обнаружил, что достичь согласия с экспериментальными результатами в условиях теплового равновесия можно, лишь приняв гипотезу о том, что обмен энергией между веществом и излучением происходит только дискретными порциями, пропорциональными новой универсальной постоянной. Эта универсальная постоянная h служит мерой для порций энергии.

И в этом случае, как и во многих других, попытка понять природу необратимости способствовала существенному прогрессу физики.

Открытие дискретности, или квантованности, энергии оставалось вне связи с другими физическими явлениями до тех пор, пока Эйнштейн не предложил первую общую интерпретацию постоянной Планка. Эйнштейн понял, к сколь далеки идущим последствиям приводит открытие Планка для природы света, и выдвинул радикально новое понятие: дуализм волна — частица (для света).

В начале XIX в. физики наделяли свет волновыми свойствами, проявляющимися в таких явлениях, как дифракция и интерференция. Но в конце XIX в. были открыты новые явления. Самым важным из новых открытий по праву считается фотоэлектрический эффект — испускание электронов поверхностью металла в результате поглощения света. Объяснить новые экспериментальные результаты традиционными волновыми свойствами света было трудно. Эйнштейн разрешил проблему фотоэлектрического эффекта, предположив, что свет может быть и волной, и частицей и что обе «ипостаси» света связаны между собой постоянной Планка. Точный смысл нашего утверждения состоит в следующем. Световая волна характеризуется частотой v и длиной волны l. Постоянная Планка позволяет переходить от частоты и длины волны к таким механическим величинам, как энергия e и импульс р. Соотношения между v и l, а также между e и р очень просты (e=hv, p=h/l), и оба содержат постоянную Планка h, Через двадцать лет после Эйнштейна Луи де Бройль обобщил дуализм волна — частица со света на материю. Это открытие послужило исходным пунктом современной формулировки квантовой механики.

В 1913 г. Нильс Бор установил связь новой квантовой физики со строением атомов (а впоследствии и молекул). Исходя из дуализма волна — частица, Бор показал, что существует дискретная последовательность орбит электронов. При возбуждении атома электрон прыжком переходит с одной орбиты на другую. В этот самый момент атом испускает или поглощает фотон, частота которого соответствует разности энергии, характеризующей движение электрона по каждой из двух орбит. Эта разность вычисляется по формуле Эйнштейна, устанавливающей соотношение между энергией и частотой.

Наступили решающие 1925—1927 годы — «золотой век» физики[188]. За этот короткий период Гейзенберг, Борн, Иордан, Шредингер и Дирак превратили квантовую механику в непротиворечивую новую теорию. Дуализм волна — частица Эйнштейна и де Бройля эта теория органично включила в схему новой обобщенной формы динамики: квантовой механики. Для нас существенна концептуальная новизна квантовой механики.

Первая и, пожалуй, наиболее существенная особенность этой теории состояла в ее новой, неизвестной в классической физике формулировке, которая понадобилась для того, чтобы ввести в теоретический язык квантование. Атом (и это весьма существенно!) может находиться лишь на дискретных энергетических уровнях, соответствующих различным орбитам электронов. Это, в частности, означает, что энергия (или гамильтониан) не может быть функцией только координат и импульса, как в классической механике (в противном случае, придавая координатам и импульсам значения, близкие к исходным, мы могли бы непрерывно изменять энергию, в то время как эксперимент показывает, что существуют лишь дискретные энергетические уровни).

Итак, от традиционного представления о гамильтониане как о функции координат и импульса, необходимо отказаться и заменить его чем-то новым. Основная идея квантовой механики состоит в том, что гамильтониан так же, как и другие величины классической механики, например координаты q или импульсы р, надлежит рассматривать как операторы. Переход от чисел к операторам — одна из наиболее дерзких идей в современной науке, и нам хотелось бы обсудить ее более подробно.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука