Читаем Порядок из хаоса полностью

В классической механике координаты и импульсы независимы в том смысле, что мы можем приписывать координате любое численное значение совершенно независимо от того, какое значение приписано нами импульсу. Но существование постоянной Планка h приводит к уменьшению числа независимых переменных. Об этом можно было бы догадаться, исходя из соотношения Эйнштейна—де Бройля l=h/p, связывающего длину волны с импульсом: постоянная Планка есть отношение длины волны частицы (тесно связанной с понятием координаты) к ее импульсу. Следовательно, координаты и импульс квантовомеханической частицы уже более не являются независимыми переменными, как в классической механике. Операторы, соответствующие координатам и импульсам, как объясняется во всех учебниках квантовой механики, могут быть представлены либо только в координатах, либо только в импульсах.

Важно подчеркнуть, что во всех этих случаях в представление оператора входят только однотипные величины (либо только координаты, либо только импульсы), но не координаты и импульсы одновременно. В этом смысле можно утверждать, что в квантовой механике число независимых переменных вдвое меньше, чем в классической.

Из соотношения между операторами в квантовой механике вытекает одно фундаментальное свойство: два оператора — qоп и ропне коммутируют, т. е., действуя на одну и ту же функцию операторами qопроп и ропqоп, мы получим различные функции. Некоммутационность операторов координат и импульсов приводит к весьма важным следствиям, так как только коммутирующие операторы допускают общие собственные функции. Таким образом, невозможно указать функцию, которая была бы одновременно собственной функцией координаты и импульса. Из определения координаты и импульса в квантовой механике следует, что не существует состояний, в которых эти две физические величины (т. е. координата q и импульс p) имели бы вполне определенное значение. Эту ситуацию, неизвестную в классической механике, выражают знаменитые соотношения неопределенности Гейзенберга. Мы можем измерять координату и импульс, но неопределенности в их значениях Dq и Dp связаны между собой неравенством Гейзенберга DqDp?h. Если неопределенность Dq в положении частицы сделать сколь угодной малой, то неопределенность Dp в ее импульсе обратится в бесконечность, и наоборот.

О соотношениях неопределенности Гейзенберга написано много, и мы сознательно переупрощаем их изложение. Нам хотелось лишь, чтобы читатель мог составить хотя бы общее представление о новых проблемах, возникших в связи с использованием операторов. Соотношение неопределенности Гейзенберга с необходимостью приводит к пересмотру понятия причинности. Мы можем определить координату с абсолютной точностью, но в тот момент, когда это происходит, импульс принимает совершенно произвольное значение, положительное или отрицательное. Это означает, что объект, положение которого нам удалось измерить абсолютно точно, тотчас же перемещается сколь угодно далеко. Локализация утрачивает смысл: понятия, составляющие самую основу классической механики, при переходе к квантовой механике претерпевают глубокие изменения.

Столь необычные следствия из квантовой механики были неприемлемы для многих физиков, в том числе и для Эйнштейна. Для доказательства их абсурдности было предложено и поставлено немало экспериментов. Предпринимались также попытки минимизировать концептуальные изменения, вызванные квантовой механикой. В частности, высказывалась мысль о том, что основания квантовой механики каким-то образом связаны с возмущениями, вносимыми в процессе наблюдения. Предполагалось, что система обладает внутренне вполне определенными механическими параметрами — координатами и импульсами, но в процессе измерения некоторые из этих параметров становятся неопределенными, и неравенство Гейзенберга выражает лишь связь между возмущениями, вносимыми в систему при измерении. Тем самым классический реализм в основе своей сохранялся бы в неприкосновенности, и мы лишь добавляли к нему позитивистское определение. Такая интерпретация слишком узка. Не квантовый процесс измерения вносит возмущения в значения координат и импульсов. Отнюдь нет! Постоянная Планка вынуждает нас к пересмотру традиционных представлений о координатах и импульсах. Такой вывод подтверждается недавними экспериментами, поставленными для проверки гипотезы о скрытых переменных, выдвинутой для восстановления позиций классического детерминизма[189]. Результаты экспериментов подтвердили правильность поразительных следствий из квантовой механики.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука