Читаем Порядок из хаоса полностью

Таким образом, теория ансамблей Гиббса открывает возможность строгого сочетания статистического подхода (исследования «популяции», описываемой плотностью r) и законов динамики. Она допускает также более точное представление состояния термодинамического равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответствует системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверхности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r перестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, приближение к равновесному состоянию имеет простой смысл в терминах эволюции плотности r: функция распределения r становится постоянной на всей микроканонической поверхности. Каждая точка такой поверхности с равной вероятностью может представлять систему. Это соответствует микроканоническому ансамблю.

Рис. 28. Временная эволюция в фазовом пространстве «объема», содержащего представляющие точки системы: величина объема остается неизменной, а форма искажается. Положение в фазовом пространстве задается координатой q и импульсом р.


Приближает ли теория ансамблей хоть сколько-нибудь к решению проблемы необратимости? Теория Больцмана описывает термодинамическую энтропию с помощью функции распределения скоростей f. Для этого Больцману пришлось ввести свою H-функцию. Как мы уже знаем, система эволюционирует во времени до тех пор, пока распределение скоростей не становится максвелловским, и на протяжении всей эволюции H функция монотонно убывает. Можно ли теперь в более общем плане принять за основу возрастания энтропии эволюцию распределения r в фазовом пространстве к микроканоническому ансамблю? Достаточно ли для этого вместо больцмановской функции H, выраженной через f, взять гиббсовскую функцию HG, зависящую точно таким же образом от r? К сожалению, ответы на оба вопроса отрицательны. Если мы рассмотрим уравнение Лиувилля, описывающее эволюцию плотности r в фазовом пространстве, и учтем сохранение объема «фазовой жидкости», о котором уже упоминалось, то вывод последует незамедлительно: функция HG постоянна и поэтому не может быть аналогом энтропии. По отношению к теории Больцмана последнее обстоятельство кажется не столько продвижением вперед, сколько шагом назад!

Несмотря на этот негативный аспект, вывод Гиббса остается весьма важным. Мы уже неоднократно отмечали расплывчатость и. неоднозначность понятий порядка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существует никакого изменения порядка! «Информация», выражаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь процесс как переход от порядка к хаосу. Вместе с тем появление корреляции в результате столкновений свидетельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процесса — прямой и обратный — в точности компенсируют друг друга.

Итак, мы приходим к важному выводу: независимо от выбора представления (будь то движение по траекториям или теория ансамблей Гиббса—Эйнштейна) нам не удастся построить теорию необратимых процессов, которая выполнялась бы для любой системы, удовлетворяющей законам классической (или квантовой) механики. У нас нет даже способа говорить о переходе от порядка к хаосу! Как следует понимать эти отрицательные результаты? Любая ли теория необратимых процессов находится в неразрешимом конфликте с механикой (классической или квантовой)? Нередко высказывалось предложение включить космологические члены, которые учитывали бы влияние расширяющейся Вселенной на уравнения движения и порождали бы стрелу времени. С подобной идеей трудно согласиться. С одной стороны, не вполне ясно, как вводить эти космологические члены. С другой стороны, точные динамические эксперименты, по-видимому, отвергают существование космологических членов, по крайней мере если говорить о земных масштабах, которые мы и рассматриваем в данном случае (достаточно вспомнить о прецизионных космических экспериментах, поставленных с помощью искусственных спутников Земли и подтвердивших с высокой точностью уравнения Ньютона). Вместе с тем, как уже неоднократно подчеркивалось, мы живем в плюралистическом мире, в котором обратимые и необратимые процессы сосуществуют в одной и той же расширяющейся Вселенной.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука