Читаем Порядок из хаоса полностью

В предыдущей главе мы описали некоторые трудности микроскопической теории необратимых процессов. Ее связь с динамикой, классической или квантовой, не может быть простой в том смысле, что необратимость и сопутствующее ей возрастание энтропии не может быть общим следствием динамики. Микроскопическая теория необратимых процессов требует наложения дополнительных, более специфических условий. Мы вынуждены принять плюралистический мир, в котором обратимые и необратимые процессы сосуществуют. Но такой плюралистический мир принять нелегко.

В своем «Философском словаре» Вольтер утверждал по поводу предопределения следующее: «...все управляется незыблемыми законами ... все заранее предустановлено ... все необходимо обусловлено... Есть люди, которые, испуганные этой истиной, допускают лишь половину ее, подобно должникам, вручающим кредиторам половину своего долга с просьбой отсрочить выплату остального. Одни события, говорят такие люди, необходимы, другие — нет. Было бы странно, если бы часть того, что происходит, была бы должна происходить, а другая часть не должна была бы происходить... Я непременно должен ощущать неодолимую потребность написать эти строки, вы — столь же неодолимую потребность осудить меня за них. Мы оба одинаково глупы, оба — не более чем игрушки в руках предопределения. Ваша природа состоит в том, чтобы творить дурное, моя — в том, чтобы любить истину и опубликовать ее вопреки вам»[217].

Сколь ни убедительно звучат такого рода априорные аргументы, они тем не менее могут вводить в заблуждение. Рассуждение Вольтера выдержано в ньютоновском духе: природа всегда подобна самой себе. В этой связи небезынтересно отметить, что ныне мы находимся в том самом странном мире, о котором с такой иронией писал Вольтер. К своему изумлению, мы открыли качественное многообразие природы.

Неудивительно поэтому, что люди в нерешительности колебались между двумя крайностями: исключением необратимости из физики (сторонником этого направления был, как мы уже отмечали, Эйнштейн[218]) и признанием необратимости как важной особенности природных явлений (выражителем этого направления стал Уайтхед со своей концепцией процесса). В настоящее время ни у кого не вызывает сомнений (см. гл. 5 и 6), что необратимость существует на макроскопическом уровне и играет важную конструктивную роль. Следовательно, в микроскопическом мире должно быть нечто проявляющееся на макроскопическом уровне, подобное необратимости.

Микроскопическая теория должна учитывать два тесно связанных между собой элемента. Прежде всего в своих попытках построить микроскопическую модель энтропии (H-функции Больцмана), монотонно изменяющейся со временем, мы должны следовать Больцману. Именно такое изменение должно задавать стрелу времени. Возрастание энтропии изолированной системы должно выражать старение системы.

Стрелу времени нам часто не удается связать с энтропией рассматриваемого процесса. Поппер приводит простой пример системы, в которой развивается односторонне направляемый процесс и, следовательно, возникает стрела времени.

«Предположим, что мы отсняли на кинопленку обширную водную поверхность. Первоначально она покоилась, а затем в воду бросили камень. Просматривая отснятый при этом фильм от конца к началу, мы увидим сходящиеся круговые волны нарастающей амплитуды. Сразу же после того, как гребень волны достигнет наибольшей высоты, круглая область невозмущенной воды сомкнется в центре. Такую картину нельзя рассматривать как возможный классический процесс Для создания ее потребовалось огромное число когерентных генераторов волн, расположенных далеко от центра, действие которых для того, чтобы быть объяснимым, должно выглядеть (как в фильме) так, словно всеми генераторами мы управляем из центра. Но если мы захотим просмотреть от конца к началу исправленный вариант фильма, то столкнемся с теми же трудностями»[219].

Действительно, какими бы техническими средствами мы ни располагали, всегда будет существовать определенное расстояние от центра, за пределами которого мы не сможем генерировать сходящуюся волну. Однонаправленные процессы существуют. Нетрудно представить себе и многие другие процессы того же типа, что и процесс, рассмотренный Поппером —мы никогда не увидим, как энергия собирается со всех сторон к звезде, — или обратные ядерные реакции, протекающие с поглощением энергии.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука