С этой точки зрения детерминистическая траектория применима лишь в ограниченных пределах. А поскольку не только на практике, но и в теории мы не можем описывать систему на языке траекторий и
Наш друг Леон Розенфельд имел обыкновение говорить, что понятия могут быть поняты лишь
Как возникла новая точка зрения? Для того чтобы ответить на этот вопрос, нам придется описать те глубокие изменения, которые претерпела динамика в XX в. Хотя по традиции динамику принято считать архетипом полной, замкнутой отрасли знания, в действительности она подверглась коренным преобразованиям.
4. Возрождение динамики
В первой части нашей книги мы рассказали о динамике XIX в. Именно такую динамику излагают многие учебники. Прототипом динамической системы в XIX в. было принято считать интегрируемую систему. Решить уравнения движения означало «удачно» выбрать координаты — так, чтобы соответствующие импульсы были инвариантами движения. Такой подход исключал взаимодействие между частями системы. Ставка на интегрируемые системы провалилась. Как уже упоминалось, в конце XIX в. Брунс и Пуанкаре доказали, что большинство динамических систем, начиная со знаменитой
С другой стороны, сама идея приближения к равновесию, сформулированная на языке теории ансамблей, требовала выхода за пределы идеализации интегрируемых систем. В гл. 8 мы видели, что в теории ансамблей изолированная система находится в равновесии, когда она представлена «микроканоническим ансамблем» — все точки на поверхности заданной энергии равновероятны. Это означает, что для системы, стремящейся к равновесию, энергия должна быть единственной величиной, сохраняющейся в ходе эволюции системы. Энергия должна быть единственным
Рис. 32. Временная эволюция ячейки в фазовом пространстве
Чтобы избежать этих трудностей, Максвелл и Больцман ввели новый, совершенно иной тип динамической системы. Для таких систем энергия является единственным инвариантом, а сами системы получили название
Рис. 33. Типичная эволюция в фазовом пространстве ячейки, соответствующей эргодической системе. «Объем» и форма ячейки сохраняются во времени, но на этот раз ячейка перемещается по всему фазовому пространству.
Выдающийся вклад в развитие теории эргодических систем внесли Дж. Биркгоф, фон Нейман, Хопф, Колмогоров и Синай (разумеется, наш перечень далеко не полон)[224]
,[225],[226]. Ныне мы знаем, что существуют обширные классы динамических (но не гамильтоновых) систем, которые эргодичны. Известно также, что даже сравнительно простые системы могут обладать более сильными свойствами, чем эргодичность. Для таких систем движение в фазовом пространстве становится сильно хаотическим (хотя в полном соответствии с уравнением Луивилля — см. гл. 7 — объем в фазовом пространстве сохраняется).Предположим, что наше знание начальных условий позволяет нам локализовать систему в малой ячейке фазового пространства. Наблюдая за эволюцией ячейки, мы увидим, как она начнет деформироваться и изгибаться, испуская, подобно амебе, «псевдоножки» по всем направлениям и распространяясь в виде волокон, которые постепенно становятся все тоньше, пока наконец не заполнят все пространство. Ни один самый искусный рисунок не может по достоинству передать всей сложности реальной ситуации. Действительно, в ходе эволюции системы с перемешиванием две точки, сколь угодно близкие в начальный момент времени, могут разойтись в разные стороны. Даже если бы мы располагали столь обширной информацией о системе, что начальная ячейка, образованная представляющими ее точками, была бы очень мала, динамическая эволюция превратила бы эту миниатюрную область в настоящее геометрическое «чудовище», пронизывающее фазовое пространство своими нитями-щупальцами.