Читаем Порядок из хаоса полностью

Рис. 34. Типичная эволюция в фазовом пространстве ячейки, соответствующей системе с перемешиванием. Объем по-прежнему сохраняется, но форма уже не остается неизменной: ячейка постепенно размазывается по всему фазовому пространству.


Продемонстрируем различие между устойчивыми и неустойчивыми системами на нескольких простых примерах. Рассмотрим двухмерное фазовое пространство. Через одинаковые промежутки времени станем производить преобразования координат, при которых старая абсцисса р переходит в новую абсциссу р—q, а старая ордината q — в новую ординату р. На рис. 35 показано, что произойдет, если применить эти преобразования к квадрату: квадрат деформируется, но после шестикратного действия преобразования мы возвращаемся к исходному квадрату. Система устойчива: соседние точки преобразуются в соседние. Кроме того, рассмотренное нами преобразование циклическое (после шести операций восстанавливается исходный квадрат).

Рис. 35. Преобразование объема в фазовом пространстве, порождаемое дискретным преобразованием: абсцисса р переходит в рq, ордината q переходит в р. Преобразование циклическое: после шестикратного повторения преобразования исходная ячейка переходит в себя.


Рассмотрим теперь два примера сильно неустойчивых систем. Первый пример чисто математический, второй имеет непосредственное отношение к физике. Первая система — преобразование, названное математиками по понятным соображениям преобразованием пекаря. Берется квадрат и сплющивается в прямоугольник. Половина прямоугольника отрезается, накладывается на другую половину, а получившийся квадрат снова «раскатывается» в прямоугольник. Последовательность операций, представленная на рис. 36, может быть повторена сколько угодно раз.

Рис. 36. Реализация «преобразования пекаря» В и обратного преобразования В-1. Траектории черной и белой точек позволяют понять, как происходит каждое преобразование.


Каждый раз квадрат разбивается на части, которые перекладываются в другом порядке. Квадрат в этом примере соответствует фазовому пространству. «Преобразование пекаря» переводит каждую точку квадрата в однозначно определенную новую точку. Хотя последовательность точек-образов вполне детерминистична, «преобразование пекаря» обнаруживает также статистические свойства. Пусть начальное условие для системы состоит в том, что область А квадрата первоначально равномерно заполнена представляющими точками. Можно показать, что, после того как преобразование будет повторено достаточное число раз, начальная ячейка А, каковы бы ни были ее размеры и расположение в квадрате, распадется на отдельные несвязные части (рис. 37). Следовательно, любая область квадрата, независимо от ее размеров, всегда содержит различные траектории, которые при каждом «дроблении» области расходятся. Таким образом, несмотря на то что эволюция каждой точки в отдельности обратима и детерминистична, описание эволюции любой, даже сколь угодно малой области носит, по существу, статистический характер.

Рис. 37. Временная эволюция неустойчивой системы. Область А со временем делится на две области A' и А", каждая из которых в свою очередь делится на две подобласти.


Другим примером простой системы с неожиданно сложным поведением может служить рассеяние твердых шаров. Рассмотрим маленький шарик, отражающийся от больших случайно распределенных шаров. Предположим, что большие шары неподвижны. Такую модель физики называют моделью, или газом, Лоренца в честь выдающегося голландского физика Гендрика Антона Лоренца.

Рис. 38. Схематическое изображение неустойчивости траектории маленького шарика, отражающегося от больших шаров. Малейшая неточность в задании положения маленького шарика делает невозможным предсказание большого шара, с которым столкнется маленький шарик после первого отражения.


Траектория малого подвижного шарика вполне определена. Но стоит лишь нам ввести в начальные условия небольшую неопределенность, как в результате последовательных столкновений эта неопределенность усилится. Со временем вероятность найти малый шарик равномерно распределится по всему объему, занятому газом Лоренца. Каково бы ни было число преобразований, газ никогда не вернется в исходное состояние.

В двух последних примерах динамические системы были сильно неустойчивы. Ситуация, с которой мы сталкиваемся здесь, напоминает неустойчивости в термодинамических системах (см. гл. 5). Произвольно малые различия в начальных условиях усиливаются. В результате переход от ансамблей в фазовом пространстве к индивидуальным траекториям становится невозможным. Описание на языке теории ансамблей мы вынуждены принять за исходный пункт. Статистические понятия перестают быть лишь приближениями к некоторой «объективной истине». Перед такими неустойчивыми системами демон Лапласа оказался бы столь же бессильным, как и мы.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука