Время течет в одном направлении: из прошлого в будущее. Мы не можем манипулировать со временем, заставить его идти вспять, в прошлое. Путешествие во времени занимало воображения многих писателей: от безымянных создателей «Тысячи и одной ночи» до Герберта Уэллса с его «Машиной времени». В небольшом произведении В. Набокова «Посмотри на арлекинов!»[234]
описываются муки рассказчика, которому не удается переключиться с одного направления времени на другое, чтобы «повернуть время вспять». В пятом томе своего капитального труда «Наука и цивилизация в Китае» Джозеф Нидэм описывает мечту китайским алхимиков: «свою высшую цель те видели не в превращении металлов в золото, а в манипулировании временем, достижении бессмертия путем резкого замедления всех процессов распада в природе[235]. Теперь мы лучше понимаем, почему время невозможно «повернуть назад».Бесконечно высокий энтропийный барьер отделяет разрешенные начальные состояния от запрещенных. Барьер этот никогда не будет преодолен техническим прогрессом: он бесконечно высок. Нам не остается ничего другого, как расстаться с мечтой о машине времени, которая перенесет нас в прошлое. Энтропийный барьер несколько напоминает другой барьер: существование предельной скорости распространения сигналов скорости света. Технический прогресс может приблизить нас к скорости света, но, согласно современным физическим представлениям, мы никогда не сможем превзойти ее.
Для того чтобы понять происхождение энтропийного барьера, нам потребуется вернуться к выражению для H-функции, возникающему в теории цепей Маркова (см. гл. 8). Сопоставим с каждым распределением числа соответствующее значение H-функции. Можно утверждать, что каждое распределение обладает вполне определенным информационным содержанием. Чем выше информационное содержание, тем труднее реализовать его носитель. Покажем, что начальное распределение, запрещенное вторым началом, обладало бы бесконечно большим информационным содержанием. Именно поэтому такие запрещенные распределения невозможно ни реализовать, ни встретить в природе.
Напомним сначала, какой смысл имеет введенная в гл. 8 H-функция. Разделим фазовое пространство на клетки, или ячейки. С каждой ячейкой
H -функция есть мера различия между
Рис. 41. Растягивающиеся (последовательность
Коль скоро мы располагаем ячейками, естественно сравнить неравновесное распределение с равновесным в каждой ячейке. В рассматриваемом нами примере неравновесное распределение есть либо растягивающийся слой (последовательность