Читаем Порядок из хаоса полностью

Сжимающийся слой в отличие от растягивающегося при любых ti всегда локализован в 4 ячейках. Это приводит к тому, что H-функция для сжимающегося слоя обращается в бесконечность, когда ti уходит в прошлое. Таким образом, различие между динамической системой и цепью Маркова состоит в том, что в случае динамической системы необходимо рассматривать бесконечно много ячеек. Приготовить или наблюдать можно лишь такие меры или вероятности, которые в пределе при бесконечно большом числе ячеек дают конечную информацию или конечную H-функцию. Это исключает сжимающиеся слои[236]. По той же причине необходимо исключить и распределения, сосредоточенные в одной точке. Начальные условия, соответствующие одной точке в неустойчивой системе, соответствовали бы бесконечной информации. Следовательно, ни реализовать, ни наблюдать их невозможно. И в этом случае второе начало выступает в роли принципа отбора.

В классической схеме начальные условия были произвольными. Для неустойчивых систем произвол исключается. Каждое начальное условие обладает в случае неустойчивых систем определенным информационным содержанием, которое зависит от динамики системы (подобно тому как в «преобразовании пекаря» для вычисления информационного содержания мы прибегли к последовательному делению ячеек). Начальные условия и динамика перестают быть независимыми. Второе начало как принцип отбора представляется нам настолько важным, что мы хотели бы привести еще один пример, на этот раз связанный с динамикой корреляций.

7. Динамика корреляций


В гл. 8 мы кратко обсудили эксперимент с обращением скоростей. Возьмем разреженный газ и проследим за его эволюцией во времени. При t=t0 обратим скорости всех молекул газа. Газ вернется в начальное состояние. Мы уже обращали внимание на то, что для воспроизведения своего прошлого газу необходимо некое хранилище информации — своего рода «память». Такой памятью являются корреляции между частицами[237].

Рис. 42. Рассеяние частиц. Первоначально скорости всех частиц равны. После соударения равенство скоростей нарушается и рассеянные частицы коррелированы с рассеятелем (корреляции здесь и далее изображены волнистыми линиями).


Рассмотрим сначала облако частиц, движущихся к мишени (тяжелой неподвижной частице). Схематически ситуация изображена на рис. 42. В далеком прошлом корреляций между частицами не было. Рассеяние приводит к двум эффектам (см. гл. 8): оно «разбрасывает» частицы (делает распределение скоростей более симметричным) и, кроме того, порождает корреляции между рассеянными частицами и рассеивателем. Корреляции станут заметными, если обратить скорости (например, с помощью сферического зеркала). Эта ситуация изображена на рис. 43 (волнистыми линиями условно показаны корреляции). Таким образом, роль рассеяния сводится к следующему. При прямом рассеянии распределение скоростей становится более симметричным и возникают корреляции между частицами. При обратном рассеянии распределение скоростей становится менее симметричным, а корреляции исчезают. Таким образом, учет корреляций приводит к основному различию между прямым и обратным рассеянием.

Рис. 43. Влияние обращения скоростей после соударения: после нового «обращенного» соударения корреляции подавлены и скорости всех частиц равны.

Аналогичные рассуждения применимы и к системе многих тел. Здесь также возможны ситуации двух типов. В одном случае (прямой процесс) некоррелированные частицы налетают, рассеиваются и порождают коррелированные частицы (рис. 44). В другом случае (обратный процесс) коррелированные частицы налетают, корреляции при столкновениях нарушаются и после-столкновении частицы уже не коррелированы (рис. 45).

Рис. 44. Возникновение корреляций после соударения (корреляции условно изображены волнистыми линиями).

Рис. 45. Разрушение предстолкновительных корреляций (волнистые линии) при столкновениях.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука