Читаем После «Структуры научных революций» полностью

Возвращаясь к этим вопросам, я готов допустить: если бы, опираясь на отношение редукции, можно было показать, что более поздняя теория решает все проблемы, решаемые ее предшественницей, и еще многие сверх того, было бы бессмысленно говорить о технике сравнения этих теорий. В действительности формализм Снида не дает оснований для контрреволюционных утверждений Штегмюллера. Напротив, одно из главных достоинств этого формализма я усматриваю в том, что он помогает уточнить проблему несоизмеримости.

Чтобы показать это, я начну с изложения моей позиции, придав ей более точную форму Большинство читателей моей книги предполагало, что когда я говорил о несоизмеримых теориях, я имел в виду, что их нельзя сравнивать. Однако термин «несоизмеримость» заимствован из математики, и там он не имеет таких следствий. Гипотенуза прямоугольного треугольника несоизмерима с его стороной, однако их можно сравнивать и измерять с любой требуемой степенью точности. Отсутствует не сравнимость, а единица длины, с помощью которой гипотенузу и сторону треугольника можно измерить прямо и точно.

Применяя термин «несоизмеримость» к теориям, я имел в виду только то, что не существует общего языка, в котором обе теории могут быть выражены полностью и который, следовательно, может послужить базой для их последовательного сравнения [168] .

С этой точки зрения проблема сравнения теорий отчасти становится проблемой перевода, и мою позицию по отношению к ней можно кратко указать, сославшись на близкую позицию, разработанную Куайном в работе «Слово и объект» и в последующих публикациях.

В отличие от Куайна я не считаю, что референция в естественном и научном языках непостижима. Действительно, ее очень трудно открыть и никогда нельзя быть полностью уверенным в том, что это удалось. Но установление референции в иностранном языке вовсе не эквивалентно созданию руководства по переводу для этого языка. Референция и перевод – это две проблемы, а не одна, и их нельзя решить одновременно. Перевод всегда и необходимо несовершенен и опирается на компромиссы. Компромисс, подходящий для одной цели, может быть непригоден для другой. Умелый переводчик, двигаясь по тексту, действует не вполне систематично, а неоднократно изменяет выбор слов и фраз в зависимости от того, какой аспект оригинала он хочет сохранить в переводе.

Как мне представляется, перевод одной теории на язык другой включает в себя компромиссы такого же рода, что и позволяет говорить о несоизмеримости. Однако сравнение теорий требует лишь идентификации референции. Неизбежное несовершенство перевода затрудняет решение проблемы, но не делает ее принципиально неразрешимой.

Опираясь на эти соображения, я сначала хочу показать, что использование Штегмюллером отношения редукции содержит в себе порочный круг. Анализ редукции у Снида опирается на принятую без обсуждения посылку, которую я считаю эквивалентной утверждению полной переводим ости.

Необходимым условием редукции теории V к теории Т является такое же отношение редукции между соответствующими ядрами Км К’. В свою очередь, это требует отношения редуцируемости между частными потенциальными моделями, характеризующими эти ядра. Таким образом, для всего этого требуется такое отношение р, которое однозначно ассоциирует каждый элемент множества М’рр с единственным элементом меньшего множества Мрр.

Снид и Штегмюллер подчеркивают, что элементы этих двух множеств могут быть по-разному описаны и благодаря этому обладать совершенно разными структурами [169] . Тем не менее они считают гарантированным существование отношения р, способного по структуре выделить элемент Мрр, соответствующий элементу М’рр, который обладает иной структурой, да еще описанной в иных терминах.

Такое допущение я рассматриваю как равнозначное предположению о беспроблемности перевода. Конечно, оно устраняет проблемы, которые для меня связаны с несоизмеримостью. Однако можем ли мы при современном положении дел считать гарантированным наличие такого отношения?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже