Величайший успех пришел к Eurisco, когда Ленат выставил свою систему против противников-людей в виртуальной военной игре под названием Traveller Trillion Credit Squadron. В этой игре участники, оперируя ограниченным бюджетом, проектировали суда гипотетического флота и сражались с другими флотами. Среди переменных в этой игре были число и типы судов, толщина бронированных корпусов, число и типы орудий и многое другое. Eurisco спроектировала флот, протестировала его в сражении против гипотетических флотов, взяла лучшее у выигравших сил и скомпоновала из них новые проекты, добавила мутации, повторила весь процесс — и так далее, то есть провела цифровое моделирование естественного отбора. После 10 ООО сражений, проведенных на сотне объединенных в сеть персональных компьютеров, Eurisco получила флот, состоящий из множества стационарных кораблей с тяжелой броней и небольшим количеством вооружения. Все оппоненты Eurisco постигла одна и та же судьба — в конце игры все их корабли были потоплены, а у машины на плаву оставалась примерно половина флота. Eurisco легко завоевала первый приз 1981 г. В следующем году организаторы турнира по Traveller изменили правила игры и не объявили их заранее, чтобы машина не смогла промоделировать несколько тысяч сражений. Однако программа уже разработала на основании предыдущего опыта эффективные эмпирические правила, поэтому так много итераций ей уже не требовалось. Она вновь без труда выиграла. В 1983 г. организаторы игры пригрозили прервать состязание, если Eurisco в третий раз подряд возьмет приз. Ленат снял систему с соревнований.
Однажды в ходе работы у Eurisco появилось правило, которое быстро достигло самого высокого показателя ценности. Ленат и его команда попытались понять, чем так замечательно это правило. Оказалось, что всякий раз, когда какое-нибудь предложенное решение задачи получало высокую оценку, это правило давало ему имя, поднимая таким образом собственную ценность решения. Оригинальное, но неполное представление о ценности чего-либо. Eurisco не хватало понимания контекста; программа не знала, что подгонка правил под текущую ситуацию не помогает выигрывать. Именно тогда Ленат взялся за составление обширной базы данных о том, чего так не хватало Eurisco, — данных о здравом смысле. В результате родился Сус — база данных, призванная играть роль здравого смысла, на программирование которой ушла тысяча человеко-лет.
Ленат так и не раскрыл исходный программный код Eurisco, что дает некоторым участникам ИИ-блогосферы основания предполагать, что он либо намеревается когда-нибудь возобновить этот проект, либо тревожится о том, что это сделает кто-то другой. Следует отметить, что Елиезер Юдковски — человек, написавший об опасностях ИИ больше, чем кто-либо другой, — считает, что этот эпохальный алгоритм 1980-х гг. ближе всех на сегодняшний день подошел к понятию по-настоящему самосовершенствующейся ИИ-системы. И он убеждает программистов не возвращать этот проект к жизни.
Итак, наш первый постулат состоит в том, что для интеллектуального взрыва необходимо, чтобы система УЧИ, о которой идет речь, владела искусством самосовершенствования, подобно Eurisco, и сознавала себя.
Сформулируем еще один постулат, прежде чем перейти к узким местам и преградам на пути к цели. По мере повышения интеллекта сознающей себя самосовершенствующейся ИИ-системы потребность в эффективности заставит ее сделать текст собственной программы как можно компактнее и втиснуть как можно больше интеллекта в «железо», в котором она родилась. Тем не менее доступные аппаратные ресурсы могут стать для системы ограничивающим фактором. К примеру, что если в ее аппаратном окружении не хватит постоянной памяти для хранения собственных копий, необходимых для самосовершенствования? Многократное пошаговое улучшение программы — основа интеллектуального взрыва по Гуду. Именно поэтому в сценарии Busy Child я предположил, что интеллектуальный взрыв происходит в недрах качественного, вместительного суперкомпьютера.
Гибкость аппаратного окружения — очень важный фактор повышения мощности ИИ. Однако эту проблему можно решить без труда. Во-первых, как мы знаем из курцвейлова Закона прогрессирующей отдачи, компьютерная скорость и объем памяти удваиваются всего за год, причем ежегодно. Это означает, что любые сегодняшние аппаратные потребности системы УЧИ через год можно будет удовлетворить в среднем вдвое меньшим количеством единиц оборудования и за вдвое меньшие деньги.