Как мы уже отмечали ранее, математические объекты лишены природных свойств (безразличны к тому, каковы они) и подчинены только отношениям — количественным и пространственным. Поэтому математику все равно, о чем он говорит, требуется лишь, чтобы выполнялись определенные отношения. Скажем, утверждая, что 3 + 6 = 9, мы ведь не имеем в виду какие-то конкретные вещи. Это могут быть вещи самой различной природы. Например, 3 журавля и 5 синиц вместе составят 9, так же, как 3 барана и 6 петухов. Важно, чтобы левая часть равенства была тождественна правой. Получается, что математические высказывания не зависят от конкретных состояний внешнего мира, а справедливы сами по себе, истинны в себе, в силу формального (отвлеченного от свойств сосчитываемых предметов) равенства.
Далее. Отношения, рассматриваемые остальной наукой, определяются характеристиками тех вещей, которые вступают в отношения. Возьмем закон тяготения Ньютона F = (m1×m2)/r2. Он указывает на то, что если тела обладают массой (m1, m2), то они вступают в отношение, пропорциональное произведению масс, деленному на квадрат расстояния между ними. Поскольку математик оперирует с абстрактными объектами, за которыми стоят вещи любой природы, то он может брать отношения тоже любой природы. Все это и наделяет математику статусом свободной науки, во всяком случае, гораздо более свободной, чем другие дисциплины. «Сущность математики именно в свободе», — подчеркивает Г. Кантор, и не один он. Про то говорят А. Пуанкаре, А. Гейтинг и даже осторожные советские философы (Ю. Шрейдер, например, явившийся, кстати сказать, в философию из математики).
Итак, обладая свободой, математик задает отношения. Однако задает-то задает, но не создает, а лишь выбирает. И вот пока выбирает, он свободен, но как только выбрал, на этом его вольности кончаются, и он обязан жестко подчиняться правилам, определяемым избранными (свободно!) отношениями, и работать в соответствии с ними. Этим и объясним известный парадокс: будучи наукой большой свободы, какая недоступна никакой другой науке, математика в то же время — самая строгая, наиболее «ранжированная» область знания. Здесь скорее всего оправдан афоризм: кто желает свободы, тот должен нести и бремя ответственности.
Налицо основные определения игры — свобода действий и волеизъявлений, но одновременно подчиненность известным правилам. Математику отличает дедуктивность ее построений, в чем выразительнее всего и проявляются игровые характеристики этой науки. Вот что писал Д. Гильберт: классическую математику «следует рассматривать как комбинаторную игру с основными символами, и нам надлежит установить… к каким комбинациям основных символов ведут ее методы построения, называемые „доказательствами“».
В самом деле, приняв без определений основные объекты и записав без обоснования и доказательств исходные положения (аксиомы), в которых фиксированы отношения между объектами, математик может затем, соблюдая известные правила, наслаждаться игрой получения следствий из принятых аксиом.
Примечательно также и рассуждение современного американского математика Д. Биркгоффа. Он пишет о «потенциально чистых математиках», называя их «математически одаренными детьми». Это уже само по себе важно, если учесть, что, где дети, там и игра (мы вскоре остановимся на этом сюжете подробнее). Так вот, чистые математики, к которым примыкает и сам Г. Биркгофф, «склонны думать об алгебре как о некоторой игре, подчиненной определенным правдоподобным правилам…».
Еще одна линия сравнений математики с игрой проходит через шахматные поля. Выдающийся советский математик, академик Н. Лузин любил эту аналогию, усматривая в ней вполне реалистичные связи. Как и в шахматной игре, писал он, в математике «любой ход, не противоречащий установленным заранее правилам, законен и истинен».
Впрочем, шахматная аналогия привлекается не только в описаниях математики. Уподобление шагает по всему фронту науки. Его приводит и Д. Менделеев, кстати, неплохой шахматист. Он сражался, например, с самим М. Чигориным и в тридцати партиях одну все же выиграл. Но если Д. Менделеев обращается к сравнению в интересах любимой химии, то В. Гейзенберг примеряет эту аналогию к физике и упрашивает коллегу и соотечественника К. Вейцзеккера написать книгу «Гроссмейстерские шахматные партии», надеясь, должно быть, увидеть в ней сопоставления с теми партиями, которые разыгрывают «гроссмейстеры» науки.
Развивая тезис «наука — это игра» (поскольку и там и тут все делается по правилам), мы хотели бы обратить внимание на одно обстоятельство, подмеченное А. Флемингом.
По существу, все, кто касается указанной стороны уподоблений игры и науки, подчеркивают, что, приняв правила, надо следовать им неукоснительно.