Конечно же, дезорганизация базового расположения корковых нейронов должна повлиять и на их связи. Именно это и показала МРТ. Все исследования корковой согласованности, проведенные в разных лабораториях с использованием различных методов визуализации, указывают на масштабные отклонения, касающиеся прежде всего пучков волокон, расположенных под затылочно-височной областью левого полушария (рис. 6.2)[414]
. Степень дезорганизации корковых связей в этом месте служит надежным показателем скорости чтения не только у дислексиков, но и у здоровых людей. К сожалению, ограниченное пространственное разрешение не позволяет нам точно определить области коры, которые связаны этими дефектными пучками. Тем не менее тот факт, что они находятся непосредственно под низкоактивными височными областями, подтверждает гипотезу о том, что у дислексиков левая височная область частично отключена от остального мозга. Неспособность передать лингвистическую информацию другим отделам, особенно левой нижней лобной области, приводит к серьезным перебоям в потоке информации[415].Дислексия у мышей
Следующим логичным шагом было бы изучить мелкоструктурную организацию нейронов левой височной доли под микроскопом или записать их активность с помощью микроэлектродов. Однако инвазивные[416]
исследования такого рода практически невозможно провести на людях. Чтобы обойти это препятствие, Альберт Галабурда решил обратиться к мозгу грызуна.Идея искать причины дислексии у крыс и мышей сначала казалась верхом абсурда. Неудивительно, что над исследованиями Галабурды шутили все, кому не лень: «Ученый обнаруживает дефицит чтения у мышей!» Тем не менее эта инновационная экспериментальная стратегия привела к открытиям, которые можно смело отнести к числу наиболее значимых достижений в нейробиологии дислексии.
Галабурда хотел воспроизвести у животных аномалии нейрональной миграции, которые наблюдались у людей. Он был уверен, что это прольет свет на механизмы и последствия дислексии. Чтобы спровоцировать миграционные дефекты, подобные нарушениям дислексического мозга, Галабурда и его коллеги разработали оригинальный метод: они замораживали небольшие участки коры мозга молодых крыс. Таким образом нарушался каркас опорных (глиальных) клеток, которые направляют и сдерживают нейроны во время миграции. В том месте, где нейроны переместились за пределы их нормального расположения в коре, появлялись беспорядочные скопления (эктопии). Надежды Галабурды оправдались – теперь у него была животная модель, но не самой дислексии, а одной из ее возможных причин.
Вмешательство в мозг молодых крыс привело к неожиданным результатам. Локальная дезорганизация коры провоцировала аномальные нейронные разряды, иногда переходившие в полномасштабную эпилепсию. Что еще удивительнее, последствия обнаруживались даже на большом расстоянии от исходных очагов поражения. Само место заморозки практически не имело значения: любое повреждение коры влекло за собой ответную реакцию в центре мозга – в сенсорных ядрах таламуса. Эта область содержит множество нейронных цепей, одна из которых состоит из сенсорных нейронов, передающих зрительные и слуховые сигналы. У крыс самые крупные нейроны таламуса, принадлежащие к магноклеточному пути, отмирали быстрее, чем обычно. Иначе говоря, аномалии коры, характерные для дислексии, ускоряли гибель клеток в таламусе.
Вернувшись к человеческому мозгу (в этом случае к мозгу умерших пациентов с дислексией), Галабурда и его коллеги поместили под микроскоп таламус, а не кору, и обнаружили дезорганизацию, сравнимую с таковой у крыс. Так, у дислексиков слуховое ядро левого таламуса содержит слишком много мелких нейронов и очень мало крупных клеточных тел[417]
. Могут ли эти аномалии объяснять сенсорные дефициты, часто встречающиеся при дислексии? Исследователи вновь обратились к животным и разработали усовершенствованные поведенческие тесты, выявившие дальнейшие параллели между людьми и крысами. В отличие от обычных крыс, особи, подвергнутые «заморозке», были нечувствительны к временной последовательности двух коротких звуков и не могли обнаружить небольшую паузу между ними. Эти базовые слуховые дефициты были очень похожи на те, что характерны при дислексии.В скором времени Галабурду и его команду ждал второй сюрприз. Обнаруженные ими аномалии в основном наблюдались у самцов. У самок повреждение коры не вызывало ни гибели клеток в таламусе, ни сенсорных дефицитов. Управляя гормонами, ученые пришли к выводу, что тестостерон, концентрация которого выше у самцов, усиливал влияние повреждений коры на таламус. И здесь можно провести потенциальную аналогию между крысами и человеком. Хотя этот вопрос остается спорным, дислексия более распространена у мужчин, чем у женщин. Возможно, решающим фактором является «тестостероновый эффект», ускоряющий гибель нейронов таламуса.