Читаем Причина СТО – инвариантность скорости света полностью

Последнее и самое загадочное из трёх известных основных следствий преобразований Лоренца — относительность одновременности выведем традиционным способом. Пусть на оси X в инерциальной системе K происходят два события в точках x1, x2 в один и тот же момент времени t. Отметим моменты совершения этих событий t'1, t'2 в системе K'. Согласно полученной формуле (5) находим:



Мы видим, что t'1 не равно t'2, то есть, два события, одновременные относительно K, оказываются разновременными относительно K'. Это расхождение во времени тем больше, чем далее отстоят друг от друга с точки зрения системы K места, где они произошли:



Итак, получив уравнения, в точности совпадающие с уравнениями преобразований Лоренца в СТО, мы показали, что преобразования Лоренца и основные следствия из них можно вывести, используя единственное предположение: скорость света "c" всегда одна и та же, независимо от того, движется ИСО или покоится. Следовательно, это предположение, постулат является единственным необходимым и достаточным условием для появления преобразований Лоренца и всех следствий из них. Поэтому есть достаточные основания считать, что математика кинематического раздела СТО является элементарной математической задачей для школьников старших классов вида "Из пункта А в пункт Б выехал поезд…".

Вывод СТО из принципа относительности

Выше было показано, что для вывода всех лоренц-следствий СТО достаточно одного (второго) постулата — о постоянстве скорости света. Но существует и противоположный подход: для получения этих же следствий достаточно другого (первого) постулата — принципа относительности (равноправия всех ИСО). Причём утверждается, что принцип постоянства скорости света вообще является излишним. Однако, в процессе вывода СТО из принципа относительности неизбежно появляется параметр, который играет в уравнениях Лоренца ту же роль, что и скорость света. То есть, принципы постоянства скорости света и относительности являются всё-таки взаимосвязанными.

Покажем это, воспользовавшись в немалой степени методикой С.Степанова [1]. Запишем результирующие уравнения преобразований времени и координаты между двумя инерциальными системами отсчета в следующем виде:



Задачу будем рассматривать как чисто математическую, идеализированную. Поэтому примем, что эти преобразования координат и времени являются линейными функциями:



Коэффициенты k, m, n, p являются функциями, зависящими от относительной скорости систем отсчёта v.

Будем считать, что в начальный момент времени t=t'=0 начала координат систем совпадают x=x'=0. Координата начала подвижной системы отсчета описывается уравнением x=vt. Подставляем x'=0 и x=vt в первое уравнение и получаем:



откуда находим:



Теперь подставляем x=0 и x'=vt в оба уравнения и получаем:



после упрощения:



и затем после подстановки из второго уравнения в первое и учетом (8) получаем:



Вставляем полученные соотношения в исходные уравнения (7):



Введём обозначения (подстановки):



Введённые параметры (подстановки) являются функциями скорости, но в дальнейшем для краткости мы будем записывать их без признака функциональности — без скобок с аргументом v. С учетом этих упрощений преобразования между системами отсчёта принимают окончательный вид:



Для определения введённых параметров γ и σ, исходя из принципа относительности (первый постулат СТО) — равноправия всех инерциальных систем отсчета, рассмотрим три такие произвольные ИСО — K1, K2 и K3.

Установим, что система K2 движется относительно K1 со скоростью v1, система K3 — относительно K2 со скоростью v2 и система K1 — относительно K3 со скоростью v3=-(v1+ v2):



Рис. 4 Три системы отсчета, движущиеся друг относительно друга.


Пометим координату x и время t цифровыми индексами, соответствующими номерам систем, к которым они относятся, и запишем преобразования для каждой из них:



Подставим x3 и t3 из второй системы уравнений в третью:



Раскроем круглые скобки:



Вынесем за скобки общие множители:



и сгруппируем общие члены:



Полученные уравнения должны иметь (и имеют) такой же вид, что и уравнения системы (9). Это значит, что, как и в системе уравнений (9) в этой системе коэффициенты при первых слагаемых в уравнениях — один и тот же коэффициент:



После сокращения и элементарных преобразований получаем:



Из этого равенства следует, что следующие отношения имеют одно и то же значение для всех систем отсчёта, независимо от скорости их движения:



Это отношение мы обозначили квадратом величины (константы) "c" — по первой букве слова "const". Поясним, почему необходимо приравнять отношения именно квадрату. Из второго уравнения системы (9) следует, что все полученные отношения имеют размерность квадрата скорости. Чтобы убедиться в этом, анализируем размерности величин (индекс "разм" означает, что рассматривается не значение, а размерность величин):



Перейти на страницу:

Похожие книги

Неудержимый. Книга XX
Неудержимый. Книга XX

🔥 Первая книга "Неудержимый" по ссылке -https://author.today/reader/265754Несколько часов назад я был одним из лучших убийц на планете. Мой рейтинг среди коллег был на недосягаемом для простых смертных уровне, а силы практически безграничны. Мировая элита стояла в очереди за моими услугами и замирала в страхе, когда я брал чужой заказ. Они правильно делали, ведь в этом заказе мог оказаться любой из них.Чёрт! Поверить не могу, что я так нелепо сдох! Что же случилось? В моей памяти не нашлось ничего, что могло бы объяснить мою смерть. Благо, судьба подарила мне второй шанс в теле юного барона. Я должен снова получить свою силу и вернуться назад! Вот только есть одна небольшая проблемка… Как это сделать? Если я самый слабый ученик в интернате для одарённых детей?!

Андрей Боярский

Самиздат, сетевая литература / Боевая фантастика