Очевидно, что в скобках стоят величины с размерностью времени. Отсюда следует, что квадрат размерности константы "c" равен квадрату размерности скорости, а сама величина "с" имеет, соответственно, размерность скорости:
Это и означает, что все отношения (10) равны
Уравнения (9) должны быть справедливы и для обратного преобразования, когда системы отсчёта "меняются местами". Относительная скорость при этом меняет свой знак:
Подставим в это уравнение значения штрихованных величин из исходной системы (9):
и окончательно:
Из соотношений (10) находим:
Подставляем это значение в (11) и получаем:
В результате преобразований получаем:
Функция γ(
Сравнивая эти уравнение, получаем:
Раскрываем скобки:
и получаем признак четности функции:
Подставляем полученное значение (13) в (12) и находим:
Теперь находим значение функции гамма:
и подставляем его в уравнения (9):
Имея два этих уравнения, можно легко вывести все остальные следствия преобразований Лоренца, как это было показано в предыдущем разделе.
Анализ принципов СТО
Итак, мы вывели явный вид уравнений (6) преобразования между двумя инерциальными системами отсчёта и получили уравнения Лоренца (14), в которые мы были
На сайте библиотеки Физического факультета СПбГУ С.Н.Манида (у него величина g также является обратной величиной к нашей константе с): "вводит некоторую постоянную величину, размерность которой — обратный квадрат скорости. Эта величина одинакова во всех системах отсчета, и ее численное значение не может быть выведено из каких-либо общих принципов. Экспериментальное значение этой величины
"мы вывели соотношения из принципа относительности и получили следствием постоянство скорости
На одном из форумов в интернете опубликован анализ статьи Фейгенбаума, посвященной, в частности, выводу соотношений СТО из принципа относительности. Там сказано:
"Чтобы вывести "специальную теорию относительности" (СТО) постулат постоянства скорости света не нужен.
Это значит, что возможно, что скорость света не постоянна (если она меньше фундаментальной константы C). Формулы СТО — логически не зависят от постулата постоянства скорости света. Фейгенбаум пишет, что СТО можно было бы открыть ещё во времена Галилея. Всё, что для этого нужно, это — принцип равноправности равномерно движущихся относительно друг друга систем (принцип относительности Галилея) и изотропия пространства" [3].
Проводится анализ самой константы, аналога скорости света:
"Ясно только, что подход Фейгенбаума кардинально меняет всё наше понимание того, что такое релятивистские эффекты. Фундаментальная константа, стоящая в релятивистских формулах не обязательно равна скорости света. Только опыт может определить её значение. Если скорость света меньше этой константы, то фотоны должны иметь массу и, как любые массивные частицы, испытывать гравитационное притяжение, что, возможно, объясняет явление искривления лучей вблизи массивных тел" [3].