Читаем Приглашение в теорию чисел полностью

Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами Ферма являются

F0 = 22° + 1 = 3,

F1 = 2+ 1 = 5,

F2 = 2 + 1 = 17,

F3 = 2 + 1 = 257,

F4 = 24 + 1 = 65 537.

В соответствии с этой последовательностью общая формула для простых чисел Ферма должна иметь вид

Fn = 22ⁿ+1. (2.3.1)

Ферма был абсолютно уверен, что все числа этого вида являются простыми, хотя он не проводил вычислений других чисел, кроме указанных пяти. Однако это предположение было сдано в архив неоправдавшихся математических гипотез после того, как Леонард Эйлер сделал еще один шаг и показал, что следующее число Ферма

F5 = 4 294 967 297 = 641 6 700 417

не является простым, что и показывает приведенная запись. Возможно, что этим история чисел Ферма была бы закончена, если бы числа Ферма не появились в совсем другой задаче, задаче построения правильных многоугольников при помощи циркуля и линейки.

Правильным многоугольником называется многоугольник, вершины которого лежат на некоторой окружности на одинаковых расстояниях друг от друга (рис. 13). Если у правильного многоугольника n вершин, то мы называем его правильным n-угольником.

Рис 13.

Если мы проведем n радиусов, соединяющих центр окружности с вершинами, то получим n центральных углов величиной 

1/n  360° 

каждый. Если можно построить угол, имеющий эту величину, то можно построить и этот n-угольник.

Древние греки очень хотели найти методы построения правильных многоугольников с помощью циркуля и линейки. Разумеется, они умели строить простейшие из них — равносторонний треугольник и квадрат. С помощью повторного деления пополам центрального угла они могли также построить правильные многоугольники с

4, 8, 16, 32…,

3, 6, 12, 24…

вершинами. Кроме того, они умели строить правильный пятиугольник, и следовательно, также правильные многоугольники с

5, 10, 20, 40…

вершинами. Был также получен еще один тип правильного многоугольника. Центральный угол в правильном 15-угольнике равен

1/15 360° = 24°,

и он может быть получен с помощью утла в 72°, соответствующего правильному пятиугольнику, и угла в 120°, соответствующего правильному треугольнику, если удвоить первый угол и вычесть из него второй. Следовательно, мы можем построить правильные многоугольники с 15, 30, 60, 120… сторонами.

В таком состоянии проблема оставалась до 1801 года, когда вышла работа по теории чисел молодого немецкого математика К. Ф. Гаусса (1777–1855) «Арифметические исследования». Она открыла новую эпоху в математике. Гаусс превзошел греческих геометров не только в том, что указал метод построения циркулем и линейкой правильного 17-угольника, но и пошел гораздо дальше. Для всех чисел n он определил, какие n-угольники могут быть построены таким образом, а какие нет. Сейчас мы опишем результаты, полученные Гауссом.

Выше мы отмечали, что из правильного n-угольника можно получить правильный 2n-угольник, деля каждый центральный угол пополам. С другой стороны, из 2n-угольника можно получить n-угольник, используя лишь каждую вторую вершину. Это показывает, что достаточно провести поиск правильных многоугольников, которые могут быть построены с помощью циркуля и линейки, только среди многоугольников с нечетным числом вершин. Гаусс доказал, что правильный n-угольник с нечетным числом вершин может быть построен с помощью циркуля и линейки тогда, и только тогда, если число n является простым числом Ферма или произведением нескольких различных простых чисел Ферма.

Что это нам дает для небольших значений n? Очевидно, что 3-угольник и 5-угольник могут быть построены, в то время как 7-угольник не может, так как 7 не является простым числом Ферма. Не может быть построен и 9-угольник, так как 9 = 3 • 3 является произведением двух равных простых чисел Ферма.

Открытие Гаусса, естественно, возродило интерес к числам Ферма (2.3.1). За последнее столетие были предприняты поистине героические поиски, вручную, без помощи машин, новых простых чисел Ферма. В настоящее время эти вычисления продолжаются со все возрастающей скоростью с помощью ЭВМ. Однако до сих пор результаты были отрицательными. Ни одного нового простого числа Ферма не было найдено и сейчас многие математики склонны считать, что их больше нет.

Система задач 2.3.

1. Найдите все нечетные числа n < 100, для которых можно построить правильный n-угольник.

2. Как построить правильный 51-угольник, имея правильный 17-угольник?

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное