Из гарвардских математиков, которых я знал, я бы упомянул о Хаслере Уитни, Маршалле Стоуне и Норберте Винере. Уитни был молодым старшим преподавателем и представлял интерес не только как математик. Он был дружелюбен, но довольно молчалив — тот физиологический тип, что в этой стране встречается чаще, чем в центральной Европе — застенчив, но не лишен уверенности в себе, с необычным юмором, честностью, проявляющейся буквально во всем, и особым даром настойчивого и глубокого изучения математики.
Маршалл Стоун, с которым я познакомился в 1935 году, когда вместе с фон Нейман и Биркгофом он проезжал через Варшаву, возвращаясь с московского конгресса, сделал в университете головокружительную карьеру, хотя ему был лишь тридцать один год. Уже состоявшийся профессор, он имел большой вес в делах факультета и всего университета. Он написал классическую работу — подробную и авторитетную книгу по гильбертову пространству и бесконечномерному обобщению трехмерного и
И Норберт Винер! С ним я познакомился во время своего выступления на коллоквиуме, в мой первый год в Гарварде. Я читал лекцию по нескольким задачам топологических групп и упомянул о полученном мною в Польше в 1930 году результате, доказывающем невозможность существования полностью аддитивной меры, определенной во всех подмножествах данного множества. Винер, который всегда сидел на лекциях в полусонном состоянии, за исключением тех моментов, когда слышал свое имя (тогда он резко вскакивал и садился обратно, что выглядело очень комично), перебил меня, сказав: «Вообще-то нечто подобное уже было доказано Витали». Я ответил ему, что знаю о результате Витали, и что он намного слабее моего, потому что требует наличия дополнительного свойства, а именно равенства конгруэнтных множеств, тогда как мой результат не предполагает подобного постулата, а потому является более сильным, чисто теоретическим доказательством в теории множеств. После лекции он подошел ко мне и извинился, согласившись с моими доводами. Так началось наше знакомство.
Конечно, я слышал о Винере и до этой встречи, и не только о его славе математика-чародея, работе в области теории чисел, знаменитых тауберовых теоремах и исследованию рядов Фурье, но также и о его эксцентричности. В Польше я узнал от Джозефа Марцинкевича о написанной им и Пэли книге, рассматривающей вопросы суммируемости преобразований Фурье. Реймонд Пэли, один из самых перспективных и успешных английских математиков, погиб в очень молодом возрасте в результате несчастного случая в горах. Марцинкевич был студентом Антони Зигмунда. Во Львов он приехал уже с докторской степенью, и поскольку у него уже был опыт в вопросах тригонометрических рядов, тригонометрических преобразований и суммируемости, он стал председательствовать в Шотландском кафе во время наших обсуждений работ Винера. Марцинкевич, как и Пэли, на которого он был похож и своим талантом, и сходными математическими интересами, и достижениями, погиб при исполнении долга офицера польской армии в начале Второй мировой войны во время военной кампании 1939 года.
Рассеянный, с виду словно «не от мира сего», Винер все же мог давать некую интуитивную оценку другим людям, и я, должно быть, заинтересовал его. Несмотря на нашу разницу в возрасте (его сорок против моих двадцати шести), он, временами, находил меня в моей маленькой квартире в Адамс Хаусе, иногда поздно вечером, и предлагал завести математическую беседу. Он говорил: «Давайте пойдем ко мне в кабинет, там я смогу писать на доске». Мне этот вариант походил больше, так как если бы мы оставались у меня, было бы трудно выпроводить его и не показаться грубым. По темным улицам мы ехали в его машине в МТИ, открывали входную дверь, включали свет, и он начинал говорить. Но, хоть Винер и был всегда интересен, где-нибудь через час я начинал клевать носом и, в конце концов, ухитрялся выбрать момент и намекнуть, что пришло время возвращаться домой.