Читаем Примени математику полностью

10 (n - n0(3m - 1)) = (10n + n0) - (30m - 9)n0 = (10n + n0) - 3(10m - 3)n0, т. е. одновременно с числом 10n + n0. Полагая m = 2, получаем признак делимости на 17, согласно которому, отбросив в данном числе последнюю цифру n0 и вычтя упятеренную (3m - 1 = 5) эту цифру из числа n, составленного из остальных цифр исходного числа, мы получим число, которое будет делиться на 17 только одновременно с исходным числом. Например, применяя эту процедуру несколько раз к числу 1067 481, последовательно получим числа 106 743, 10 659, 1020, 102,0, последнее из которых, а значит, и исходное, делится на 17.

§ 3. Легко ли извлекать корни?


Одной из наиболее трудоемких арифметических операций является извлечение корня квадратного, кубического или другой степени из данного числа. Относительно просто корень можно найти в том случае, когда заранее известно, что он представляет собой целое число, т. е. извлекается нацело. В некоторых случаях при извлечении корня приходится искать лишь приближенное его значение с наперед заданной точностью. Напомним, что приближенным значением величины а с точностью до числа σ>0 называется любое (вообще говоря, не единственное) число х, удовлетворяющее оценкам

а - δ≤x≤a + δ. Приближенное равенство π≈3,14, к примеру, означает, что число 3,14 есть приближенное значение числа n с точностью до половины единицы последнего разряда, т. е. до

В настоящем параграфе вы познакомитесь с некоторыми методами нахождения корней, позволяющими довольно скоро и без особых усилий получать вполне удовлетворительные приближения.

3.1. Сколько знаков до запятой? Десятичная запись данного числа имеет n знаков до запятой. Можно ли заранее сказать, сколько знаков до запятой будет иметь десятичная запись корня квадратного из данного числа?

3.2. Корни других степеней Как по количеству знаков до запятой в десятичной записи данного числа определить количество знаков до запятой в десятичной записи корня кубического или корня другой степени из этого числа?

3.3. Сведение к целому числу Каким образом можно свести извлечение корня какой-либо степени из конечной десятичной дроби к извлечению корня той же степени из целого числа? Как связаны между собой числа

3.4. Разложив на простые множители Разложив целое число на простые множители, можно определить, извлекается ли из него нацело корень данной степени. Попробуйте таким путем определить, корни каких степеней извлекаются нацело из числа 1728.

3.5. Корень пятой степени в уме Возведите в пятую степень каждое из чисел 0, 1, 2, ..., 9 и придумайте способ быстрого извлечения корня пятой степени из данного целого числа, имеющего в десятичной записи не более 10 знаков, в предположении, что этот корень извлекается из данного числа нацело.

Найдите корни

3.6. Корень кубический в уме Возведите в куб каждое из чисел 0, 1, 2, ..., 9 и придумайте способ быстрого извлечения корня кубического из данного целого числа, имеющего в десятичной записи не более шести знаков, в предположении, что этот корень извлекается из данного числа нацело. Найдите корни

3.7. Корень квадратный в уме Каким способом можно быстро извлечь корень квадратный из целого числа, имеющего в десятичной записи не более четырех знаков, в предположении, что этот корень извлекается из данного числа нацело?

Найдите корни Попробуйте найти корень наиболее простым способом.

3.8. По остатку от деления на 11 Укажите, как по остатку от деления на 11 куба целого числа можно найти остаток от деления на 11 самого числа. Пользуясь признаком делимости на 11, придумайте способ быстрого извлечения корня кубического из данного целого числа, имеющего в десятичной записи от семи до девяти знаков, в предположении, что этот корень извлекается нацело. Найдите корень

3.9. Алгоритм извлечения корня квадратного Для нахождения корня произведем следующие действия (см. рис. 2):


Рис. 2


а) десятичную запись числа 273 529 разобьем на группы по две цифры (как в решении задачи 3.1);

б) для старшей группы цифр, образующей число 27, подберем такую цифру, чтобы ее квадрат был наибольшим, но не превосходил числа 27; такой цифрой будет 5, ее и запишем в качестве первой цифры ответа;

в) из старшей группы цифр вычтем найденный в предыдущем пункте квадрат первой цифры ответа и к полученной разности (остатку) 27 - 25 = 2 припишем справа (снесем) следующую группу цифр 35; получим число 235;

Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика