Приведите обоснование предложенному алгоритму и найдите с его помощью корень
3.10. Где остановиться?
Объясните, как следует поступать в случае, если предложенный в задаче 3.9 алгоритм в применении к данному числу не заканчивается ни на каком шаге, т. е. не наступает ситуация, описанная в п. ж) задачи 3.9. Докажите, что предложенный алгоритм позволяет и в этом случае находить значение корня квадратного с любой наперед заданной точностью. Найдите приближенное значение3.11. Приближенная формула корня квадратного
Найдя какое-нибудь, пусть даже совсем грубое, приближенное значение х>0 корня квадратного из данного числаДокажите, что погрешность
Какое значение для
3.12. Способ Герона
Выберем какое-либо приближение х0 корня квадратного из данного числа а (например,и т. д. Докажите, что погрешности
Проверьте, что этот способ сводится к многократному применению приближенной формулы корня квадратного (см. задачу 3.11). Найдите с помощью способа Герона приближенное значение
3.13. Почти удвоение точности
Пусть после вычисления первых n значащих цифр корня квадратного из данного числа а (например, с помощью алгоритма задачи 3.9) в ответе получилось приближенное значение х и остаток3.14. Приближенная формула корня кубического
Найдя какое-нибудь приближение x>0 корня кубического из данного числаОцените при b>0 погрешность
Решения
3.1.
Пусть число а содержит в десятичной записи m знаков до запятой. Тогда справедливы оценкииз которых следует, что квадрат числа а имеет либо 2m, либо 2m-1 знаков до запятой, так как
Поэтому если данное число имеет четное число
Обычно, чтобы найти количество знаков корня квадратного, цифры десятичной записи исходного числа разбивают на группы справа налево, начиная от запятой и включая в каждую группу по две цифры (кроме, быть может, самой левой группы, в которой в случае нечетного количества этих цифр окажется только одна цифра). Тогда количество полученных групп как раз и совпадет с искомым количеством знаков корня.
3.2.
Как и в решении задачи 3.1, заметим, что если число а содержит в десятичной записи m знаков до запятой, то его куб имеет либо 3m, либо 3m-1, либо 3m-2 знака до запятой, так какПоэтому искомое количество знаков корня кубического совпадает с количеством групп, на которые разбиваются
цифры десятичной записи исходного числа справа налево, считая от запятой по три цифры в группе (кроме, возможно, последней группы).
Аналогично искомое количество знаков корня k-я степени равно количеству групп по k цифр (в последней группе может быть менее k цифр), на которые разбиваются цифры десятичной записи исходного числа, считая от запятой. Это вытекает из неравенств
справедливых для любого числа а, имеющего в десятичной записи m знаков до запятой.