3.3.
Для того чтобы свести извлечение корня k-й степени из конечной десятичной дроби к извлечению корня k-й степени из целого числа, достаточно в исходной дроби перенести запятую вправо на подходящее числоИз этого же равенства получаем зависимость между числами
а для чисел
3.4.
Так какДело в том, что показатели 6 и 3 степеней, в которых простые множители входят в разложение данного числа, имеют лишь один общий делитель, отличный от 1. Этот общий делитель - число 3 - как раз и указывает на возможность извлечения корня соответствующей (третьей) степени.
3.5.
Возведем каждое из целых чисел от 0 до 9 в пятую степень:Заметим, что каждое из полученных в результате чисел оканчивается той же цифрой, что и соответствующее основание пятой степени. Тот же вывод можно распространить и на случай, когда основанием пятой степени является многозначное целое число, поскольку последняя цифра результата при этом полностью определяется последней цифрой основания степени.
Теперь при извлечении корня пятой степени из данного числа в предположении, что этот корень извлекается нацело, очень легко определяется последняя цифра корня - она просто совпадает с последней цифрой данного числа. Например, последняя цифра корня
Аналогично легко определяется последняя цифра 3 корня
205
= 32'00000≤64'36343≤243'00000 = 305, из которых следует, что искомый корень удовлетворяет неравенствамПоэтому первая его цифра не может быть никакой другой цифрой, кроме 2. Следовательно, сам корень равен 23, что подтверждается непосредственной проверкой возведением его в пятую степень.
3.6.
Возведем каждое из целых чисел от 0 до 9 в куб:Заметим, что все полученные в результате числа оканчиваются разными цифрами. Проанализировав, какими именно цифрами они оканчиваются, заключаем, что последняя цифра куба любого целого числа либо совпадает с последней цифрой основания (если эта цифра есть 0, 1, 4, 5, 6 или 9), либо совпадает с дополнением последней цифры основания до 10 (если эта цифра есть 2, 3, 7 или 8).
Таким образом, последняя цифра числа
Итак, искомый корень равен 14, что подтверждается проверкой.
Наконец, аналогично находим, что последняя цифра числа
3.7.
В отличие от случаев с нечетными степенями, рассмотренных в задачах 3.5 и 3.6, последняя цифра целого числа, вообще говоря, не восстанавливается однозначно по последней цифре его квадрата. Действительно, одинаковыми цифрами оканчиваются квадраты чисел, взаимно дополняющих друг друга до 10:Но "индивидуальными" цифрами оканчиваются квадраты
Поэтому искомый корень может быть равен только 95, что и оказывается верным.
Менее простым для вычисления является корень квадратный из числа 3249. Первая цифра этого корня равна 5, так как
552
= 5*6*100 + 25 = 3025<3249 вытекает, что искомый корень больше 55, а значит, равен 57, что подтверждается проверкой.Для нахождения числа
122
= 144≤158<169 = 132. Итак, искомый корень трехзначен, начинается цифрами 1, 2, а кончается либо цифрой 4, либо цифрой 6. Так как этот корень больше числа 125, что следует из оценки1252
= 12*13*100 + 25 = 15 625<15 876, то он равен 126.