Читаем Примени математику полностью

§ 4. Простое или составное?


При решении многих практических задач, в которых участвуют натуральные числа, немаловажную роль играет разложение этих чисел на множители, Основными "кирпичиками" в таком разложении являются простые числа, т. е. числа, большие 1 и делящиеся только на 1 и на себя. Остальные натуральные числа, большие 1, называются составными (число 1 не относится ни к простым, ни к составным). Основная теорема арифметики гласит, что всякое натуральное число, кроме 1, может быть представлено в виде произведения простых множителей, причем это представление единственно, если отвлечься от порядка множителей.

Издавна математиков интересовали вопросы о количестве и других свойствах простых чисел, а также о возможностях разложения конкретных чисел на простые множители. Еще Евклидом было доказано, что простых чисел бесконечно много. Древнегреческому математику Эратосфену был известен удобный способ отыскания простых чисел, который был назван решетом Эратосфена. Благодаря титаническим усилиям ряда ученых удалось получить ответы на многие, но пока не на все вопросы, связанные с распределением простых чисел в натуральном ряду. Что же касается разложения чисел на простые множители, то эта задача для больших чисел остается довольно трудной и по сей день.

4.1. Составные числа Докажите, что составных чисел бесконечно много,

4.2. Теорема Евклида Докажите, что простых чисел бесконечно много.

4.3. Простые числа - соседи Могут ли два простых числа оказаться идущими подряд? А три?

4.4. Составные числа - соседи Найдите пять последовательных натуральных чисел, каждое из которых является составным. Для любого ли натурального значения n можно подобрать n таких чисел?

4.5. Простое или составное? Чтобы узнать, является ли данное натуральное число n составным, достаточно проверить, имеет ли оно хотя бы один делитель, больший 1 и меньший n. Докажите, что эту работу можно сократить, ограничившись проверкой делимости числа n только на простые числа и к тому же не превосходящие

4.6. Простое или составное? Разложить на простые множители число: а) 315; б) 127; в) 1001; г) 899; д) 919.

4.7. Решето Эратосфена Выпишем подряд все натуральные числа от 1 до некоторого числа п и зачеркнем число 1. Возьмем первое незачеркнутое число, большее 1,- это будет число 2,- и зачеркнем каждое второе число, начиная отсчет от числа 2+1. Затем возьмем первое незачеркнутое число, большее 2,- это будет число 3,- и зачеркнем каждое третье число, начиная отсчет от числа 3 + 1 (ранее зачеркнутые числа также отсчитываются). Затем возьмем первое незачеркнутое число, большее 3,- это будет число 5,- и зачеркнем каждое пятое число, начиная отсчет от числа 5 + 1. Продолжая действовать так и далее, остановимся тогда, когда первое незачеркнутое число, большее предыдущего, окажется большим Докажите, что в итоге незачеркнутыми останутся все простые числа, не превосходящие n, и только они.

4.8. Первые 25 простых чисел Используя решето Эратосфена, выпишите все простые числа, не превосходящие 100.

4.9. Еще несколько простых чисел Выпишите все простые числа, находящиеся между числами 120 и 150.

4.10. Эйлерова модификация решета Описанную в задаче 4.7 процедуру отыскания простых чисел можно упростить, если с самого начала не выписывать чисел, кратных 2, 3 или 5: Найдите все остатки от деления на 30, которые могут давать числа, не делящиеся ни на 2, ни на 3, ни на 5.

4.11. Попробуйте сами Выпишите все простые числа, находящиеся между числами 470 и 520.

Решения


4.1. Все четные числа, большие 2 (а их бесконечно много), являются составными, так как каждое из них делится на 1, на себя и на 2.

4.2. Предположим, что утверждение задачи не верно, т. е. простые числа образуют лишь конечное множество, состоящее из чисел p1, p2, ..., pn. Рассмотрим число


которое в силу основной теоремы арифметики делится хотя бы на одно из чисел p1, p2, ..., pn. Но тогда разность m - p1*p2*...*pn также делится на это число. С другой стороны, указанная разность равна 1 и не может делиться ни на одно из чисел p1, p2, ..., pn (больших 1). Полученное противоречие доказывает, что исходное предположение не верно, а утверждение задачи верно.

Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика