Итак, в любом случае, если
то итоговое давление можно увеличить. Аналогично получаем, что давление pn-1
должно быть наибольшим из оставшихся давлений и т. д. Вообще, давлениязаменив слагаемое
Таким образом, наибольшее значение давления в первом баллоне можно получить, подсоединив его поочередно к каждому баллону в возрастающей последовательности их давлений.
Можно доказать, что большего давления по сравнению с давлением, полученным указанным способом, нельзя достичь, даже если разрешить соединять сразу несколько любых баллонов и использовать их более чем по одному разу.
§ 9. Простейшая геометрия на местности
Для практических целей часто возникает необходимость производить геометрические построения на местности. Такие построения нужны и при строительстве зданий, при прокладке дорог, и при различных измерениях объектов на местности. Можно подумать, что работа на ровной поверхности земли (а именно такой мы и будем ее считать во всех задачах настоящего параграфа) ничем, по существу, не отличается от работы циркулем и линейкой на обыкновенном листе бумаги. Это не совсем так. Ведь на бумаге циркулем мы можем проводить любые окружности или их дуги, а линейкой - любые прямые. На местности же, где расстояния между точками довольно велики, для подобных действий понадобилась бы длинная веревка или огромная линейка, которые не всегда имеются под руками. Да и вообще чертить прямо на земле какие бы то ни было линии - дуги или прямые - представляется весьма затруднительным. Таким образом, построения на местности имеют свою специфику.
Во-первых, откажемся от проведения настоящих прямых на земле. Будем эти прямые
Во-вторых, запретим при построениях проводить на земле какие-либо дуги вообще - большие или маленькие. Поэтому фактически циркуля у нас нет. Все, что остается от циркуля,- это способность откладывать на данных
При указанных двух ограничениях, не пользуясь к тому же транспортиром, работать, конечно, трудно, но все же попробуйте решить предложенные ниже задачи!
9.1. Проложить прямую
На местности колышками обозначены две удаленные друг от друга точки. Как проложить через них прямую и, в частности, как можно без помощника устанавливать колышки на прямой между данными точками?9.2. Точка пересечения прямых
На местности колышками обозначены две точки одной прямой и две точки другой прямой. Как найти точку пересечения этих прямых?9.3. Симметрия относительно точки
На местности обозначены точки A и В. Найдите точку С, симметричную точке A относительно точки В.9.4. Параллельная прямая
На местности обозначены три данные точки A, В и С, не лежащие на одной прямой. Через точку A проложите прямую, параллельную прямой ВС.9.5. Середина отрезка
Найдите середину отрезка AВ, заданного на местности двумя точками A и В.9.6. В данном отношении
Отрезок, заданный на местности двумя точками A и В, требуется разделить в отношении, в котором находятся длины двух отрезков KL и MN, заданных на местности точками К, L и М, N. Как это сделать?9.7. Биссектриса угла
На местности обозначены три точки A, М и N, не лежащие на одной прямой. Проложите биссектрису угла MAN.