10.11. Ширина реки
Вы находитесь на берегу реки и хотите измерить ее ширину, не имея возможности перебраться> на другой берег. Для этого вы отыскиваете глазами на противоположном берегу реки близко к воде какой-либо заметный ориентир А - камень, деревце и т. п.- и отмечаете на своем берегу точку В, расстояние от которой до точки А представляет собой, по-вашему, ширину реки. Как измерить длину отрезка АВ?10.12. Расстояние до недоступной точки
Вы хотите узнать расстояние до высокого здания, которое можно увидеть прямо со двора вашего дома. Естественно, в городских условиях непосредственно пройти к зданию по прямой линии вам не удастся. Более того, свои геометрические построения вы можете осуществлять лишь на сравнительно небольшой площадке перед домом. Укажите способ для определения искомого расстояния.10.13. Расстояние между двумя недоступными точками
Вы находитесь на одном берегу реки, а на другом, недоступном для вас берегу расположены два объекта. Как вас берегу расположены два объекта. Как измерить расстояние между ними?Решения
10.1.
Достаточно пройти какое-либо заранее известное и не слишком короткое расстояние, скажем между соседними километровыми или стометровыми столбиками на шоссе, и поделить это расстояние на количество сделанных шагов.Отметим, что средняя длина шага взрослого человека примерно равна половине его роста, считая до уровня глаз.
10.2.
Проще всего отложить вдоль какой-нибудь прямой один или несколько десятков размахов пальцев, а затем поделить на их количество отложенную в результате длину.10.3.
Так как лучи солнца можно считать практически параллельными, то тень от дерева во столько же раз длиннее тени от какого-либо шеста, во сколько раз дерево выше шеста. Поэтому, установив вертикально шест известной высоты а и измерив отношение k длины тени от дерева к длине тени от шеста, мы вычислим искомую высоту дереваЗаметим, что указанный способ не слишком надежен, так как отбрасываемая при свете солнца тень не имеет отчетливой границы из-за присущей ей неясно очерченной каймы полутени.
10.4.
Для приблизительного нахождения высоты памятника по снимку можно выбрать две точки, расположенные у фундамента этого памятника, и измерить расстояние между ними на фотографии и на местности (второе расстояние нас интересует скорее не в чистом виде, а как проекция на прямую, перпендикулярную направлению, в котором был сфотографирован памятник). Найдя отношение k первого из расстояний ко второму, мы узнаем масштаб снимка, после чего останется замерить на нем высоту памятника и поделить ее на k.10.5.
Пусть А и В - данные точки на местности, между которыми определяется расстояние. Выберем точку С, из которой видны обе точки А я В (рис. 13). На продолжении отрезка АС за точку С отметим точку D на расстоянии АС от точки С. Аналогично на продолжении отрезка ВС за точку С отметим точку Е, для которой СЕ = ВС. Тогда отрезки ED и АВ равны, поскольку они симметричны относительно точки С.Рис. 13
Если же из-за недостатка места точки Е и D выйдут за пределы досягаемости, то их можно в определенное число раз приблизить к точке С. Тогда отрезок ED будет в то же число раз короче отрезка АВ, так как треугольники ABC и DEC будут подобны.
10.6.
Слегка отклонив камыш и держа его в натянутом состоянии, замерим расстояние а между точками А и В, в которых камыш пересекает поверхность воды соответственно в вертикальном и наклоненном положении (рис. 14). Возвратим камыш в исходное состояние и определим высоту b над водой, на которую поднимется при этом точка В наклоненного камыша, заняв исходное положение С. Тогда, обозначив через D основание камыша, а через х - искомую глубину AD, из прямоугольного треугольника ABD находимоткуда
Рис. 14
10.7.
Установив вертикальный шест на некотором расстоянии от дерева, нужно стать в такую точку, из которой верхний конец шеста загораживает в точности верхушку дерева (рис. 15). Тогда, если высота части шеста над уровнем глаз равна а, а расстояния от глаз по горизонтали до шеста и до дерева равны b и y соответственно, то из подобия треугольников можно найти высоту х дерева над уровнем глаз. Наконец, зная свой рост h до уровня глаз, получаем полную высоту дереваРис. 15
Заметим, что вычисления и измерения можно упростить, если добиться равенства