10.8.
Встав в точку А на некотором расстоянии от пруда (рис. 16), можно расположить перед собой горизонтальную палку длины а так, чтобы расстояния от обоих ее концов до одного глаза (второй глаз при этом лучше закрыть) были равны одному и тому же значению b, а сами концы палки зрительно совместились с крайними точками пруда, видимыми из точки А. Тогда, измерив расстояние у от А до ближайшей точки пруда по прямой, проходящей через середину палки, можно вычислить радиус х пруда, а значит, и его диаметр 2х. Действительно, из подобия соответствующих прямоугольных треугольников находимоткуда
Рис. 16
10.9.
Установим вертикальный шест на некотором расстоянии от здания и станем в такую точку, из которой верхушка шпиля зрительно совмещается с верхним концом шеста (рис. 17). Затем, пройдя некоторое расстояние в направлении от здания по прямой, на которой лежит первая точка и проекция А шпиля на горизонтальную плоскость, еще раз проделайте такую же операцию. Пусть высота шеста над уровнем глаз равна а, расстояние от глаз до шеста в первом положении оказалось равным b, а во втором с. Тогда, измерив расстояние у между точками В и С, в которых мы стояли в первом и во втором случаях, можно сосчитать высоту х шпиля над уровнем глаз. В самом деле, обозначим через z расстояние между точками А и В. Из подобия соответствующих треугольников имеемоткуда
Рис. 17
Коэффициент при y в последнем равенстве можно сделать равным 1, если в первом положении шеста добиться равенства
10.10.
Глубину котлована можно измерить с помощью короткой палки. Для этого достаточно отыскать глазами на дне котлована какой-либо ориентир О и, встав на краю обрыва, установить палку горизонтально так, чтобы основание В палки оказалось на одной вертикали с глазами H, а другой ее конец А зрительно совместился с ориентиром О (рис. 18). Такую же операцию нужно проделать, лежа на краю обрыва и опустив основание С палки по той же вертикали ниже края обрыва. Измерив расстояния b и c от глаз до основания палки в первом и во втором положении соответственно, а также зная свой рост h до уровня глаз, можно вычислить глубину х котлована. Действительно, обозначим через y расстояние по горизонтали от ориентира до проекции края обрыва. Тогда из подобия соответствующих треугольников имеемоткуда
Рис. 18
10.11.
Выберем точку С на продолжении прямой АВ за точку В, а также точку D, не лежащую на прямой АВ (рис. 19). Затем выберем точки Е и F на продолжениях прямых BD и CD соответственно за точку D так, чтобы выполнялись равенства BD = DE, CD = DF. Наконец, найдем точку G пересечения прямых EF и AD. Тогда искомое расстояние между точками А а В будет равно длине отрезка EG. Действительно, из равенства треугольников BDC и EDF (по двум сторонам и углу между ними) имеем равенство углов CBD и FED. Поэтому треугольники BAD и EGD равны (по стороне и двум прилежащим к ней углам), а значит, равны и их соответствующие стороны АВ и GE.Рис. 19
10.12.
Для нахождения расстояния от данной точки В до недоступной точки А можно использовать построения, аналогичные приведенным в решении задачи 10.11 с той лишь разницей, что точки Е и F на рис. 19 следует выбрать ближе к точке D, т. е. на расстоянии, в одинаковое число раз меньшем длин отрезков BD и CD соответственно. Во столько же раз отрезок GE окажется меньшим отрезка АВ, что вытекает из подобия (а не равенства, как это было в решении задачи 10.11) треугольников BAD и EGD.10.13.
Путь А и В - недоступные точки, между которыми надо найти расстояние. Выберем на некоторой прямой три точки D, Е и F так, чтобы выполнялось равенство DE = EF (рис. 20). При этом заранее побеспокоимся о том, чтобы точка С пересечения прямых AF и BD оказалась доступной и лежала с той же стороны от прямой DF, что и отрезок АВ: этого можно достичь уменьшением отрезка DF и переобозначением его концов. На продолжении отрезка СЕ за точку Е отметим точку G на расстоянии СЕ от точки Е. Далее найдем точку Н пересечения прямых DG и АЕУ а также точку К пересечения прямых FG и BE. Тогда искомое расстояние будет равно КН. Действительно, при преобразовании симметрии относительно центра Е точка С переходит в точку G, точка D - в точку F, прямая CD - в прямую GF, прямая BE - в себя, а точка В пересечения прямых CD и BE - в точку К пересечения GF и BE. Аналогично точка Л при этом преобразовании переходит в точку H, поэтому отрезок НК симметричен отрезку АВ относительно точки Е.Рис. 20
§ 11. На равном расстоянии